Skip to main content
Log in

Solvothermal fabrication of uniform silver nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conventional polyol synthesis has been widely used for the preparation of silver nanostructures with different morphologies. However, there is a drawback that it is difficult to control the reaction parameters for shape-controlled synthesis of silver nanostructures, such as the rate of the addition of silver ions to the solution. In this paper, we combine polyol process and solvothermal method for easily synthesizing silver nanostructures. Importantly, the introduction of cuprous chloride (CuCl) to the reaction leads to increasing the population of twinned Ag seeds (required for wire growth) at the expense of that of single Ag seeds. Silver nanowires (Ag NWs) with uniform width (~80 nm in width) can be obtained in the presence of poly(vinyl pyrrolidone) (PVP). Some other parameters, such as the reaction temperature and molar ratios of the repeating unit of PVP to AgNO3 (R), also have been discussed. A possible mechanism is put forward to understand the evolution of silver nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.D. McFarland, R.P. Van Duyne, Nano Lett. 3, 1507 (2003)

    Article  Google Scholar 

  2. R.J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J.E. Sueiras, Chem. Commun. 7, 846 (2004)

    Article  Google Scholar 

  3. P. Kuang, J.-M. Park, W. Leung, R.C. Mahadevapuram, K.S. Nalwa, T.-G. Kim, S. Chaudhary, K.-M. Ho, K. Constant, Adv. Mater. 23, 2469 (2011)

    Article  CAS  Google Scholar 

  4. R. Zhu, C.-H. Chung, K.C. Cha, W. Yang, Y.B. Zheng, H. Zhou, T.-B. Song, C–.C. Chen, P.S. Weiss, G. Li, Y. Yang, ACS Nano 5(12), 9877 (2011)

    Article  CAS  Google Scholar 

  5. C. Yang, H. Gu, W. Lin, M.M. Yuen, C.P. Wong, M. Xiong, B. Gao, Adv. Mater. 23, 3052 (2011)

    Article  CAS  Google Scholar 

  6. A.R. Madaria, A. Kumar, F.N. Ishikawa, C. Zhou, Nano Res. 3, 564 (2010)

    Article  CAS  Google Scholar 

  7. A.R. Madaria, A. Kumar, C. Zhou, Nanotechnology 22, 245201 (2011)

    Article  Google Scholar 

  8. B. Dan, G.C. Irvin, M. Pasquali, ACS Nano 3, 835 (2009)

    Article  CAS  Google Scholar 

  9. W.J. Hong, Y.X. Xu, G.W. Lu, C. Li, G.Q. Shi, Electrochem. Commun. 10, 1555 (2008)

    Article  CAS  Google Scholar 

  10. Y. Galagan, J.-E.J.M. Rubingh, R. Andriessen, C–.C. Fan, P.W.M. Blom, S.C. Veenstra, J.M. Kroon, Sol. Energy Mater. Sol. Cells 95, 1339 (2011)

    Article  CAS  Google Scholar 

  11. H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Nano Lett. 10, 4242 (2010)

    Article  CAS  Google Scholar 

  12. W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Adv. Mater. 23, 2905 (2011)

    Article  CAS  Google Scholar 

  13. H. Lin, T. Ohta, A. Paul, J.A. Hutchison, K. Demid, O. Lebedev, G.V. Tendeloo, J. Hofkensa, H. Uji-i, J. Photochem. Photobiol. 221, 220 (2011)

    Article  CAS  Google Scholar 

  14. S. Jradi, L. Balan, X.H. Zeng, J. Plain, D.J. Lougnot, P. Royer, R. Bachelot, S. Akil, O. Soppera, L. Vidal, Nanotechnology 21, 095605 (2010)

    Article  CAS  Google Scholar 

  15. R. Becker, F. Söderlind, B. Liedberg, P.-O. Käll, Mater. Lett. 64, 956 (2010)

    Article  CAS  Google Scholar 

  16. Z. Yang, H. Qian, H. Chen, J.N. Anker, J. Colloid Interface Sci. 352, 285 (2010)

    Article  CAS  Google Scholar 

  17. R. Sarkara, P. Kumbhakara, A.K. Mitraa, R.A. Ganeev, Curr. Appl. Phys. 10, 853 (2010)

    Article  Google Scholar 

  18. J. Reyes-Gasga, J.L. Elechiguerra, C. Liu, A. Camacho-Bragado, J.M. Montejano-Carrizales, M.J. Yacaman, J. Cryst. Growth 286, 162 (2006)

    Article  CAS  Google Scholar 

  19. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 14, 4736 (2002)

    Article  CAS  Google Scholar 

  20. Y. Sun, Y. Xia, Adv. Mater. 14, 833 (2002)

    Article  CAS  Google Scholar 

  21. Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett. 2, 165 (2002)

    Article  CAS  Google Scholar 

  22. P. Jiang, S.-Y. Li, S–.S. Xie, Y. Gao, L. Song, Chem. Eur. J. 10, 4817 (2004)

    Article  CAS  Google Scholar 

  23. W. Zhang, P. Chen, Q. Gao, Y. Zhang, Y. Tang, Chem. Mater. 20, 1699 (2008)

    Article  CAS  Google Scholar 

  24. D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, J. Colloid Interface Sci. 344, 286 (2010)

    Article  CAS  Google Scholar 

  25. Y. Sun, Y. Xia, Analyst 128, 686 (2003)

    Article  CAS  Google Scholar 

  26. S. Chang, K. Chen, Q. Hua, Y. Ma, W. Huang, J. Phys. Chem. C 115, 7979 (2011)

    Article  CAS  Google Scholar 

  27. D.V.J. Goia, J. Mater. Chem. 14, 451 (2004)

    Article  CAS  Google Scholar 

  28. B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 11, 454 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank College of Materials Science and Engineering (Hubei University) and Huazhong University of Science and Technology for the test of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Chen, D. Solvothermal fabrication of uniform silver nanowires. J Mater Sci: Mater Electron 23, 2035–2041 (2012). https://doi.org/10.1007/s10854-012-0699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0699-4

Keywords

Navigation