Skip to main content
Log in

Structural and electrical properties of V-doped ZnO prepared by the solid state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the synthesis, crystal structure and electrical conductivity properties of vanadium (V)-doped zinc oxide (ZnO) powders (i.e. Zn1−2X V X O binary system, x = 0, 0.0025, 0.005, 0.0075 and in the range 0.01 ≤ x ≤ 0.15). I-phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the V-doped ZnO binary system, were determined by X-ray diffraction (XRD). The limit solubility of V in the ZnO lattice at this temperature is 3 mol % at 950 °C. The impurity phase at 950 °C was determined as ZnV2O6 when compared with standart XRD data. The research focused on single I-phase ZnO samples which were synthesized at 950 °C because of the limit of the solubility range is widest at this temperature. It was observed that the lattice parameters a and c decreased with V doping concentration. The electrical conductivity of the pure ZnO and single I-phase samples were studied using the four-point probe dc method at temperatures between 100 and 950 °C in an air atmosphere. The electrical conductivity values of pure ZnO and 3 mol % V-doped ZnO samples at 100 °C were 2.75 × 10−6 and 7.94 × 10−5 Ω−1 cm−1, and at 950 °C they were 3.4 and 54.95 Ω−1 cm−1, respectively. In other words, the electrical conductivity increased with V doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005)

    Article  CAS  Google Scholar 

  2. Y. Liu, L.E. Lao, Solid State Ionics 177, 159 (2006)

    Article  CAS  Google Scholar 

  3. R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. MahadevanPillai, V. Ganesan, V.R. Reddy, Sol. Energy Mater. Sol. C 94, 68 (2010)

    Article  CAS  Google Scholar 

  4. C. Huan, F. Gang, Solid State Electron 67, 27 (2012)

    Google Scholar 

  5. C.C. Tsai, C.S. Hong, C.C. Shih, S.Y. Chu, J. Alloy. Compd. 511, 54 (2012)

    Article  CAS  Google Scholar 

  6. D.R. Patil, L.A. Patil, Talanta 77, 1409 (2009)

    Article  CAS  Google Scholar 

  7. P. Mitra, A.P. Chatterjee, H.S. Maiti, Mater. Lett. 35, 33 (1998)

    Article  CAS  Google Scholar 

  8. S.M. Kim, M.E. Lee, J.W. Choi, D.J. Suh, Y.W. Suh, Catal. Commun. 12, 1328 (2011)

    Article  CAS  Google Scholar 

  9. K. Ada, M. Gökgöz, M. Önal, Y. Sarıkaya, Powder Technol. 181, 285 (2008)

    Article  CAS  Google Scholar 

  10. H.H. Hng, P.L. Chan, Ceram. Int. 35, 409 (2009)

    Article  CAS  Google Scholar 

  11. C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesh, R. Viswanatha, Powder Technol. 214, 337 (2011)

    Article  CAS  Google Scholar 

  12. D.W. Zeng, C.S. Xie, B.L. Zhu, B.L. Song, A.H. Wang, Mater. Sci. Eng. B 104, 68 (2003)

    Article  Google Scholar 

  13. T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Chem. 7, 85 (1997)

    Article  CAS  Google Scholar 

  14. H. Huang, X. Ruan, G. Fang, M. Li, J. Phys. D Appl. Phys. 40, 7041 (2007)

    Article  CAS  Google Scholar 

  15. S. Du, Y. Tian, H. Liu, J. Liu, Y. Chen, J. Am. Ceram. Soc. 89, 2440 (2006)

    Article  CAS  Google Scholar 

  16. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, J. Eur. Ceram. Soc. 24, 139 (2006)

    Article  Google Scholar 

  17. R. Maity, S. Kundoo, K.K. Chattopadhyay, Sol. Energy Mater. Sol. C 86, 217 (2005)

    Article  CAS  Google Scholar 

  18. P. Nunes, E. Fortunato, P. Vilarinho, R. Martins, Vacuum 64, 281 (2002)

    Article  CAS  Google Scholar 

  19. S.V. Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  CAS  Google Scholar 

  20. Singh S, Ph. D. thesis, Department of Physics Indian Institute of Technology Madras, Indian; (2009)

  21. Z. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M. Kawasaki, H. Koinuma, J. Cryst. Growth 214–215, 55 (2000)

    Article  Google Scholar 

  22. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Nanotechnology 15, 856 (2004)

    Article  CAS  Google Scholar 

  23. T. Schuler, M.A. Aegerter, Thin Solid Films 351, 125 (1999)

    Article  CAS  Google Scholar 

  24. T. Yamamoto, H.K. Yoshida, Phys. B 302–303, 155 (2001)

    Article  Google Scholar 

  25. J. Han, A.M.R. Senos, P.Q. Mantas, Mater. Chem. Phys. 75, 117 (2002)

    Article  CAS  Google Scholar 

  26. S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, K.W. Rhie, Appl. Phys. Lett. 81, 4212 (2002)

    Article  CAS  Google Scholar 

  27. Y.K. Park, J.I. Han, M.G. Kwak, H. Yang, S.H. Ju, W.S. Cho, J. Lumin. 78, 87 (1998)

    Article  CAS  Google Scholar 

  28. X. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, T. Sugano, J. Lumin. 87–89, 1254 (2000)

    Article  Google Scholar 

  29. S.J. Pearton, I.E.E.E. Fellow, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE T Electron. Dev. 54, 1040 (2007)

    Article  CAS  Google Scholar 

  30. E. Schlenker, A. Bakin, B. Postels, A.C. Mofor, M. Kreye, C. Ronning, S. Sievers, M. Albrecht, U. Siegner, R. Kling, A. Waag, Superlattices Microst. 42, 236 (2007)

    Article  CAS  Google Scholar 

  31. T. Naydenova, P. Atanasov, M. Koleva, N. Nedialkov, J. Perriere, D. Defourneau, H. Fukuoka, M. Obara, C. Baumgart, S. Zhou, H. Schmidt, Thin Solid Films 518, 5505 (2010)

    Article  CAS  Google Scholar 

  32. K. Lovchinov, H. Nichev, O. Angelov, M.S. Vassileva, V. Mikli, D.D. Malinovska, J. Phys. Conf. Ser. 253, 012030 (2010)

    Article  Google Scholar 

  33. X. Mao, W. Zhong, Y. Du, J. Magn. Mater. 320, 1102 (2008)

    Article  CAS  Google Scholar 

  34. S. Yilmaz, O. Turkoglu, I. Belenli, Mater. Chem. Phys. 112, 472 (2008)

    Article  CAS  Google Scholar 

  35. J.J. Kim, T.B. Hur, J.S. Kwak, D.Y. Kwon, Y.H. Hwang, H.K. Kim, J. Korean Phys. Soc. 47, 333 (2005)

    Article  Google Scholar 

  36. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  37. Weast RC, Handbook of chemistry and physics, 56 edn. Crc Press, Boca Raton; (1975–1976)

  38. M. Faiz, N. Tabet, A. Mekki, B.S. Mun, Z. Hussain, Thin Solid Films 515, 1377 (2006)

    Article  CAS  Google Scholar 

  39. S.-Y. Chu, T.-M. Yan, S.-L. Chen, Ceram. Int. 26(7), 733 (2000)

    Article  CAS  Google Scholar 

  40. X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, J. Phys.: Condens. Matter 18, 7471 (2006)

    Article  CAS  Google Scholar 

  41. K. Park, K.Y. Ko, J. Alloy. Compd. 430, 200 (2007)

    Article  CAS  Google Scholar 

  42. S. Yılmaz, O. Turkoglu, M. Arı, I. Belenli, Cerâmica 57, 185 (2011)

    Article  Google Scholar 

  43. D.K. Schroder, Semiconductor Material and Device Characterization, vol. 3 (Wiley, USA, 2006), p. 8

    Google Scholar 

  44. M. Girtan, G.G. Rusu, S.D. Seignon, M. Rusu, Appl. Surf. Sci. 254, 4179 (2008)

    Article  CAS  Google Scholar 

  45. A. Sawalha, M. Abu-Abdeen, A. Sedky, Phys. B 404, 1316 (2009)

    Article  CAS  Google Scholar 

  46. J. Han, A.M.R. Senos, P.Q. Mantas, J. Eur. Ceram. Soc. 22, 49 (2002)

    Article  Google Scholar 

  47. M.S. Hossain, R. Islam, K.A. Khan, Chalcogenide Lett 5, 1 (2008)

    CAS  Google Scholar 

  48. Rusu DI, Rusu II, Analele Stiintifice Ale Universitatii Al. I. Cuza Iası Tomul XLV-XLVI, s. Fizica Starii Condensate 1999–2000, vol 113

  49. K. Park, J.K. Seong, S. Nahm, J. Alloy. Compd. 455, 331 (2008)

    Article  CAS  Google Scholar 

  50. Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    Article  CAS  Google Scholar 

  51. H. Colak, O. Turkoglu, J. Mater. Sci. Technol. 27(10), 944 (2011)

    Article  CAS  Google Scholar 

  52. R.M. Mehra, P.C. Mathur, A.K. Kathuria, R. Shyam, Phys. Status Solidi A 41(2), 189 (1977)

    Article  Google Scholar 

  53. S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Foundation of Erciyes University (Kayseri, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çolak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çolak, H., Türkoğlu, O. Structural and electrical properties of V-doped ZnO prepared by the solid state reaction. J Mater Sci: Mater Electron 23, 1750–1758 (2012). https://doi.org/10.1007/s10854-012-0657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0657-1

Keywords

Navigation