Skip to main content
Log in

Mechanical and electrical properties of nanocomposites containing hybrid fillers of disk-like copper and conductive carbon black

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrically conductive rubber (ECR) was prepared through conventional rubber mixing techniques on a two-roll mill, which the conductive filler was polymer-coated Cu nano-disk and conductive carbon black (CCB). The effect of Cu nanoparticles content on the mechanical and electrical resistivity properties of ECR was further investigated. The obtained results of six different compositions for ECR with 0, 5, 10, 15, 20 and 25 per hundred of rubber (phr) of Cu nanoparticles loading were compared. It was found that ECR has lower volume resistivity and high tensile strength, compared with rubber containing commercial Cu particles. These results suggest that when the Cu particles are nano-disk and surface modified, the mechanical and stability properties of the rubber can be synchronously improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.D. KIM, D.D.L. Chung, J. Electron. Mater. 31, 933 (2002)

    Article  CAS  Google Scholar 

  2. S.X. Tan, J. Zhai, M.X. Wan, L. Jiang, D.B. Zhu, Synth. Met. 137, 1511 (2003)

    Google Scholar 

  3. Y.P. Duan, S.H. Liu, H.T. Guan, Sci. Technol. Adv. Mat. 6, 513–518 (2005)

    Google Scholar 

  4. L. Chen, L. Lu, D.J. Wu, G.H. Chen, Polym. Composite. 284, 93–498 (2007)

    Google Scholar 

  5. M.K. Shin, J.Y. Oh, M. Lima, M.E. Kozlov, S.J. Kim, R.H. Baughman, Adv. Mater. 22, 2663–2667 (2010)

    Google Scholar 

  6. P. Ghosh, A. Chakrabarti, Eur. Polym. J. 36, 1043–1054 (2000)

    Google Scholar 

  7. M. Saroop, A.K. Ghosh, G.N. Mathur, J. Plas. Technol. 7, 41 (2003)

    Google Scholar 

  8. S. Vaddiraju, H. Cebeci, K.K. Gleason, B.L. Wardle, ACS Appl. Mater. Interfaces 11, 2565–2572 (2009)

    Google Scholar 

  9. R.S. Vemuri, K.K. Bharathi, S.K. Gullapalli, C.V. Ramana, ACS Appl. Mater. Interfaces. 2, 2632–2628 (2010)

    Google Scholar 

  10. L.N. Ho, H. Nishikawa, T. Takemoto, J. Mater. Sci. Mater. Electron. (2010). doi: 10.1007/s10854-010-0174-z

  11. K.L. Chan, M. Mariatti, Z. Lockman, L.C. Sim, J. Mater. Sci.: Mater. Electron. 21, 772–778 (2010)

    Article  CAS  Google Scholar 

  12. C. Yang, Y.T. Xie, M.M.F. Yuen, B. Xu, B. Gao, X.M. Xiong, C.P. Wong, Adv. Funct. Mater. 20, 2580–2587 (2010)

    Google Scholar 

  13. M. Alazemi, I. Dutta, F. Wang, R.H. Blunk, A.P. Angelopoulos, Adv. Funct. Mater. 19, 1118–1129 (2009)

    Google Scholar 

  14. I. Chodak, M. Omastova, J. Pionteck, J. Appl. Polym. Sci. 82, 1903 (2001)

  15. D. Untereker, S. Lyu, J. Schley, G. Martinez, L. Lohstreter, ACS Appl. Mater. Interfaces. 1, 97–101 (2009)

    Google Scholar 

  16. R. Blachnik, Müller A. Thermochin acta. 361, 31–52 (2000)

    Article  CAS  Google Scholar 

  17. W.S. Fulton, G.C. Smith, K.J. Titchener, Appl. Surf. Sci. 221, 69–86 (2004)

    Google Scholar 

  18. H.Y. Chen, J.H. Lee, Y.H. Kim, D.W. Shin, S.C. Park, X.H. Meng, J.B. Yoo, J. Nanosci. Nanotechnol. 10, 629–636 (2010)

    Article  CAS  Google Scholar 

  19. Y.H. Wang, P.L. Chen, M.H. Liu, Nanotechnology. 17, 6002 (2006)

  20. A.S.A. Reffaee, D.E.E.l. Nashar, S.L. Abd-El-Messieh, K.N. Abd-El Nour, Mater. Design. 30, 3760–3769 (2009)

  21. P.C. Ma, M.Y. Liu, H. Zhang, S.Q. Wang, R. Wang, K. Wang, Y.K. Wong, B.Z. Tang, S.H. Hong, K.W. Paik, J.K. Kim, ACS Appl. Mater. Interfaces. 1, 1090–1096 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 50025309, and No: 90201016), the Project of Technology Promotion for Shan Xi province (No 20080321015), University’s Science and technology exploiture of Shanxi Province (20080320ZX) and Youthful Science Foundation of North University OF China. The authors are grateful for the financial support and express their thanks to Yi Wang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Zhao, G., Niu, H. et al. Mechanical and electrical properties of nanocomposites containing hybrid fillers of disk-like copper and conductive carbon black. J Mater Sci: Mater Electron 22, 1737–1743 (2011). https://doi.org/10.1007/s10854-011-0354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0354-5

Keywords

Navigation