Skip to main content

Advertisement

Log in

Adsorption and diffusion of potassium on layered SnO: a DFT analysis

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to their low cost, potassium-ion batteries (PIBs) are considered the best alternatives to Li-ion batteries (LIBs) due to the high abundance and reactivity of K. However, the large ionic size of K than Li, hinder the commercial availability of PIBs. Herein, DFT calculations are employed to shed light on the electrochemical performance of 2D SnO as an anode for PIBs. The electronic properties of bare SnO reveal semiconducting nature. However, it is metallic with a small amount of K-adsorption. As an anode for PIBs, 2D SnO has a very low average open-circuit voltage (OCV) of 0.292 V with a high K storage capacity (398 mAh g−1). Additionally, the outcomes of the AIMD simulations of the SnO monolayer are displayed with low and high content of K-loading which shows the thermal stability of the host material for PIBs. Eventually, we discuss the potassiation and depotassiation mechanism of the SnO sheet, which reveal fast charging and discharging rates due to the low activation energy barrier (0.07 eV). Based on the above fascinating outcomes, the SnO monolayer could be a promising anode for rechargeable PIBs.

Graphical Abstract

The table of content (TOC) depicts the structural model of SnO monolayer as anode material and rapid charging and discharging processes for K-migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang Z, Kou Z, Miao C et al (2019) Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles. Ceram Int 45(11):14469–14473

    Article  CAS  Google Scholar 

  2. Kim TH, Park JS, Chang SK et al (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2(7):860–872

    Article  CAS  Google Scholar 

  3. Rehman J, Fan X, Zheng W (2020) 2D SnC sheet with a small strain is a promising Li host material for Li-ion batteries. Mater Today Commun 26:101768

    Article  Google Scholar 

  4. Banos R, Manzano-Agugliaro F, Montoya F et al (2011) Optimization methods applied to renewable and sustainable energy: a review. Renewable Sustain Energy Rev 15(4):1753–1766

    Article  Google Scholar 

  5. Liu J, Zhang JG, Yang Z et al (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23(8):929–946

    Article  CAS  Google Scholar 

  6. Sultana I, Rahman MM, Chen Y et al (2018) Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv Funct Mater 28(5):1703857

    Article  Google Scholar 

  7. Rehman J, Fan X, Zheng W (2021) 2D SnC sheet with a small strain is a promising Li host material for Li-ion batteries. Mater Today Commun 26:101768

    Article  CAS  Google Scholar 

  8. Jing Y, Zhou Z, Cabrera CR et al (2014) Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J Mater Chem A 2(31):12104–12122

    Article  CAS  Google Scholar 

  9. Peng L, Zhu Y, Chen D et al (2016) Two-dimensional materials for beyond-lithium-ion batteries. Adv Energy Mater 6(11):1600025

    Article  Google Scholar 

  10. Rehman J, Fan X, Laref A et al (2021) Potential anodic applications of 2D MoS2 for K-ion batteries. J Alloys Compd 865:158782

    Article  CAS  Google Scholar 

  11. Butt MK, Rehman J, Yang Z et al (2022) Storage of Na in 2D SnS for Na ion batteries: a DFT prediction. Phys Chem Chem Phys 24:29609–29615

    Article  CAS  Google Scholar 

  12. Rehman J, Fan X, Butt M et al (2021) First principles predictions of Na and K storage in layered SnSe2. Appl Surf Sci 566:150522

    Article  CAS  Google Scholar 

  13. Butt MK, Dinh VA, Zeeshan HM et al (2021) SnSe2 monolayer is a promising Na host material: A DFT study. Mater Sci Semicond Process 136:106175

    Article  CAS  Google Scholar 

  14. Lv X, Li F, Gong J et al (2020) Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study. Phys Chem Chem Phys 22(16):8902–8912

    Article  CAS  Google Scholar 

  15. Dong Y, Shi H, Wu ZS (2020) Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv Funct Mater 30(47):2000706

    Article  CAS  Google Scholar 

  16. Sibari A, Marjaoui A, Lakhal M et al (2018) Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol Energy Mater Sol Cells 180:253–257

    Article  CAS  Google Scholar 

  17. Rehman J, Ali R, Ahmad N et al (2019) Theoretical investigation of strain-engineered WSe2 monolayers as anode material for Li-ion batteries. J Alloys Compd 804:370–375

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  19. Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: A review. J Power Sources 240:66–79

    Article  CAS  Google Scholar 

  20. Wang J, Wang H, Zang X et al (2021) Recent advances in stability of carbon-based anodes for potassium-ion batteries. Batter Supercaps 4(4):554–570

    Article  Google Scholar 

  21. Ren Q, Zhang X, Guo Y et al (2022) Shape-controlled SnO and their improved properties in the field of gas sensor, photocatalysis, and lithium-ion battery. Sensors Actuators B Chem 372:132622

    Article  CAS  Google Scholar 

  22. He P, Yu H, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22(9):3680–3695

    Article  CAS  Google Scholar 

  23. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665

    Article  CAS  Google Scholar 

  24. Sun H, Zhang Y, Xu X et al (2021) Strongly coupled Te-SnS2/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage. J Energy Chem 61:416–424

    Article  CAS  Google Scholar 

  25. Allen JP, Scanlon DO, Parker SC et al (2011) Tin monoxide: structural prediction from first principles calculations with van der waals corrections. J Phys Chem C 115(40):19916–19924

    Article  CAS  Google Scholar 

  26. Zhang F, Zhu J, Zhang D et al (2017) Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries. Nano Lett 17(2):1302–1311

    Article  CAS  Google Scholar 

  27. Huang A, Sun X, Dong S (2017) Tin monooxide monolayer as promising anode materials for recharge ion batteries. Int J Electrochem Sci 12:10534–10541

    Article  CAS  Google Scholar 

  28. Sun G, Kurti J, Rajczy P et al (2003) Performance of the Vienna ab initio simulation package (VASP) in chemical applications. J Mol Struct 624:37–45

    Article  CAS  Google Scholar 

  29. Zhao YJ, Geng W, Freeman A et al (2002) Structural, electronic, and magnetic properties of α-and β-MnAs: LDA and GGA investigations. Phys Rev B 65(11):113202

    Article  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  31. Bucko T, Hafner J, Lebegue S et al (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824

    Article  CAS  Google Scholar 

  32. van Gog H, Li WF, Fang C et al (2019) Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. NPJ 2D Mater. Appl 3:1–12

    Google Scholar 

  33. Tao J, Guan L (2017) Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Sci Rep 7:1–7

    Article  Google Scholar 

  34. Urban A, Seo DH, Ceder G (2016) Computational understanding of Li-ion batteries. Npj Comput Mater 2:1–13

    Google Scholar 

  35. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  36. Christensen N, Svane A, y Blancá EP (2005) Electronic and structural properties of SnO under pressure. Phys Rev B 72:014109

    Article  Google Scholar 

  37. Vetter J, Novák P, Wagner MR et al (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281

    Article  CAS  Google Scholar 

  38. Gao J, Zhao J et al (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Sci Rep 2(1):1–8

    Article  Google Scholar 

  39. Bhauriyal P, Mahata A, Pathak B (2017) Graphene-like Carbon–Nitride Monolayer: A Potential Anode Material for Na- and K-Ion Batteries. J Phys Chem C  121 (18):9748–97564

    Article  Google Scholar 

  40. Abbas G, Alay-e-Abbas S M, Laref A et al (2020) Two-dimensional B3P monolayer as a superior anode material for Li and Na ion batteries: a first-principles study. Mater Today Energy 17:100486

    Article  Google Scholar 

  41. Jing Y, Zhou Z, Cabrera CR et al (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117(48):25409–25413

    Article  CAS  Google Scholar 

  42. Rehman J, Fan X, Zheng W et al (2019) Computational insight of monolayer SnS2 as anode material for potassium ion batteries. Appl Surf Sci 496:143625

    Article  CAS  Google Scholar 

  43. Rehman J, Fan X, Laref A et al (2020) Adsorption and diffusion of potassium on 2D SnC sheets for potential high-performance anodic applications of potassium-ion batteries. ChemElectroChem 7(18):3832–3838

    Article  CAS  Google Scholar 

  44. Asenbauer J, Eisenmann T, Kuenzel M et al (2020) The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4(11):5387–5416

    Article  CAS  Google Scholar 

  45. Samad A, Shafique A, Kim HJ et al (2017) Superionic and electronic conductivity in monolayer W2C: ab initio predictions. J Mater Chem A 5(22):11094–11099

    Article  CAS  Google Scholar 

  46. Butt MK, Zeeshan HM, Dinh VA et al (2021) Monolayer SnC as anode material for Na ion batteries. Comput Mater Sci 197:110617

    Article  Google Scholar 

  47. Salavati M, Rabczuk T (2019) Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Comput Mater Sci 160:360–367

    Article  CAS  Google Scholar 

  48. Yang E, Ji H, Jung Y (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119(47):26374–26380

    Article  CAS  Google Scholar 

  49. He X, Wang R, Yin H et al (2022) 1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries. Appl Surf Sci 584:152537

    Article  CAS  Google Scholar 

  50. Shen Y, Liu J, Li X et al (2019) Two-dimensional T-NiSe2 as a promising anode material for potassium-ion batteries with low average voltage, high ionic conductivity, and superior carrier mobility. ACS Appl Mater Interfaces 11(39):35661–35666

    Article  CAS  Google Scholar 

  51. Dou K, Ma Y, Zhang T et al (2019) Prediction of two-dimensional PC6 as a promising anode material for potassium-ion batteries. Phys Chem Chem Phys 21(47):26212–26218

    Article  CAS  Google Scholar 

  52. Xiang P, Chen X, Xiao B et al (2019) Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl Mater Interfaces 11(8):8115–8125

    Article  CAS  Google Scholar 

  53. Wang S, Yang B, Chen H et al (2019) Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Stor Mater 16:619–624

    Google Scholar 

  54. Zhang X, Yu Z, Wang SS et al (2016) Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. J Mater Chem A 4(39):15224–15231

    Article  CAS  Google Scholar 

  55. Shukla A, Gaur N (2020) A DFT study of defects in SnO monolayer and their interaction with O2 molecule. Chem Phys Lett 754:137717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The publication of this article was funded by Qatar National Library. This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 21B0637), Researchers Supporting Project number (RSP2022R492), King Saud University, Riyadh, Saudi Arabia, and Natural Science Basic Research Plan in Shaanxi Province of China (2021JM-041)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javed Rehman or Mohamed F. Shibl.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 622 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Rehman, J., Butt, M.K. et al. Adsorption and diffusion of potassium on layered SnO: a DFT analysis. J Mater Sci 58, 3208–3218 (2023). https://doi.org/10.1007/s10853-023-08224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08224-w

Navigation