Skip to main content
Log in

Polymer-derived ceramic molten metal filters

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and the performance of polymer-derived ceramic filters for molten metal filtration. Two different filter types were studied: foam filters produced from flexible polyurethane (PU) foams and additive manufacturing (AM) filters produced from thermoplastic polyurethane (TPU) cellular structure, and the results from all filter types were compared with that of the commercially used SiC foam filters. In both cases, the urethane-based polymeric template was impregnated with the preceramic solution, followed by pyrolysis. The produced ceramic components were then used to filter a molten Al alloy (A357), and the resulting Al samples were characterized for their mechanical properties. When filters were used, more reproducible and reliable mechanical properties were achieved compared to the samples obtained without any filtration. Among the different filters tested, the foam filters demonstrated better performance in comparison with the AM ceramic filters due probably to the three-dimensional interconnected porosity compared with the unidirectional cellular structure of the AM ceramic filters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Taylor JA (1996) Metal-related castability effects in aluminium foundry alloys. Cast Metals 8:225–252

    Article  Google Scholar 

  2. Mbuya TO, Odera BO, Ng’ang’a SP (2003) Influence of iron on castability and properties of aluminium silicon alloys: literature review. Int J Cast Metals Res 16:451–465. https://doi.org/10.1080/13640461.2003.11819622

    Article  CAS  Google Scholar 

  3. Mansurov YN, Letyagin N, Finogeyev A, Rakhmonov JU (2018) Influence of impurity elements on the casting properties of Al-Mg based alloys. Non-Ferrous Metals 44:24–29

    Article  Google Scholar 

  4. Jorstad JL (1980) Influence of aluminum casting alloy metallurgical factors on machinability. SAE Trans 89:1892–1906

    Google Scholar 

  5. Vedula VR, Green DJ, Hellman JR (1999) Thermal shock resistance of ceramic foams. J Am Ceram Soc 82:649–656

    Article  CAS  Google Scholar 

  6. Hammel EC, Ighodaro OLR, Okoli OI (2014) Processing and properties of advanced porous ceramics: an application based review. Ceram Int 40:15351–15370. https://doi.org/10.1016/j.ceramint.2014.06.095

    Article  CAS  Google Scholar 

  7. Green DJ, Colombo P (2003) Cellular ceramics: intriguing structures, novel properties, and innovative applications. MRS Bull 28:296–300

    Article  CAS  Google Scholar 

  8. Vakifahmetoglu C (2014) Zeolite decorated highly porous acicular calcium silicate ceramics. Ceram Int 40:11925–11932. https://doi.org/10.1016/j.ceramint.2014.04.028

    Article  CAS  Google Scholar 

  9. Campbell J (2015) Complete casting handbook: metal casting processes, metallurgy, techniques and design butterworth-heinemann. Elsevier

    Google Scholar 

  10. Emmel M, Aneziris CG (2012) Development of novel carbon bonded filter compositions for steel melt filtration. Ceram Int 38:5165–5173. https://doi.org/10.1016/j.ceramint.2012.03.022

    Article  CAS  Google Scholar 

  11. Wetzig T, Luchini B, Dudczig S, Hubálková J, Aneziris CG (2018) Development and testing of carbon-bonded alumina foam filters for continuous casting of steel. Ceram Int 44:18143–18155. https://doi.org/10.1016/j.ceramint.2018.07.022

    Article  CAS  Google Scholar 

  12. Ugur S, Adem D (2020) AlSi10Mg alloy infiltration into porous SiC structures manufactured by sponge replication, emerging. Mater Res 9:868–876. https://doi.org/10.1680/jemmr.20.00196

    Article  Google Scholar 

  13. Liang X, Li Y, Yan W, Wang Q, Tan F, He Z, Sang S (2021) Preparation of SiC reticulated porous ceramics with high strength and increased efficient filtration via fly ash addition. J Eur Ceram Soc 41:2290–2296. https://doi.org/10.1016/j.jeurceramsoc.2020.11.039

    Article  CAS  Google Scholar 

  14. Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer derived ceramics. Mater Sci Eng R Rep 106:1–30. https://doi.org/10.1016/j.mser.2016.05.001

    Article  Google Scholar 

  15. Kulkarni A, Pearce J, Yang Y, Motta A, Sorarù GD (2021) SiOC(N) Cellular structures with dense struts by integrating fused filament fabrication 3D printing with polymer-derived ceramics. Adv Eng Mater 23:2100535. https://doi.org/10.1002/adem.202100535

    Article  CAS  Google Scholar 

  16. Yang Y, Kulkarni A, Soraru GD, Pearce JM, Motta A (2021) 3D Printed SiOC(N) ceramic scaffolds for bone tissue regeneration: improved osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 22:13676

    Article  CAS  Google Scholar 

  17. Bruzzoniti MC, Appendini M, Rivoira L, Onida B, del Bubba M, Jana P, Sorarù GD (2018) Polymer-derived ceramic aerogels as sorbent materials for the removal of organic dyes from aqueous solutions. J Am Ceram Soc 101:821–830. https://doi.org/10.1111/jace.15241

    Article  CAS  Google Scholar 

  18. Bruzzoniti MC, Appendini M, Onida B, Castiglioni M, del Bubba M, Vanzetti L, Jana P, Sorarù GD, Rivoira L (2018) Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters, environmental science and pollution. Research. 25:10619–10629. https://doi.org/10.1007/s11356-018-1367-x

    Article  CAS  Google Scholar 

  19. Jana P, Bruzzoniti MC, Appendini M, Rivoira L, del Bubba M, Rossini D, Ciofi L, Sorarù GD (2016) Processing of polymer-derived silicon carbide foams and their adsorption capacity for non-steroidal anti-inflammatory drugs. Ceram Int 42:18937–18943. https://doi.org/10.1016/j.ceramint.2016.09.045

    Article  CAS  Google Scholar 

  20. Santhosh B, Vakifahmetoglu C, Ionescu E, Reitz A, Albert B, Sorarù GD (2020) Processing and thermal characterization of polymer derived SiCN(O) and SiOC reticulated foams. Ceram Int 46:5594–5601. https://doi.org/10.1016/j.ceramint.2019.11.003

    Article  CAS  Google Scholar 

  21. Santhosh B, Ionescu E, Andreolli F, Biesuz M, Reitz A, Albert B, Sorarù GD (2021) Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics. J Eur Ceram Soc 41:1151–1162. https://doi.org/10.1016/j.jeurceramsoc.2020.09.028

    Article  CAS  Google Scholar 

  22. Jana P, Zera E, Sorarù GD (2017) Processing of preceramic polymer to low density silicon carbide foam. Mater Des 116:278–286. https://doi.org/10.1016/j.matdes.2016.12.010

    Article  CAS  Google Scholar 

  23. Semerci T, de Mello Innocentini MD, Marsola GA, Lasso PRO, Soraru GD, Vakifahmetoglu C (2020) Hot air permeable preceramic polymer derived reticulated ceramic foams. ACS Appl Polymer Mater 2:4118–4126. https://doi.org/10.1021/acsapm.0c00734

    Article  CAS  Google Scholar 

  24. Francis A (2018) Progress in polymer-derived functional silicon-based ceramic composites for biomedical and engineering applications. Mater Res Exp 5:62003–62035

    Article  Google Scholar 

  25. Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) Conductive ceramic foams from preceramic polymers. J Am Ceram Soc 84:2265–2268

    Article  CAS  Google Scholar 

  26. Konegger T, Torrey J, Flores O, Fey T, Ceron-Nicolat B, Motz G, Scheffler F, Scheffler M, Greil P, Bordia RK, Agarwal AK, Pandey A, Gupta AK, Aggarwal SK, Kushari A (2014) Ceramics for sustainable energy technologies with a focus on polymer-derived ceramics. Springer India, New Delhi, pp 501–533

    Google Scholar 

  27. Hourlier D, Venkatachalam S, Ammar M-R, Blum Y (2017) Pyrolytic conversion of organopolysiloxanes. J Anal Appl Pyrol 123:296–306. https://doi.org/10.1016/j.jaap.2016.11.016

    Article  CAS  Google Scholar 

  28. Vakifahmetoglu C, Balliana M, Colombo P (2011) Ceramic foams and micro-beads from emulsions of a preceramic polymer. J Eur Ceram Soc 31:1481–1490. https://doi.org/10.1016/j.jeurceramsoc.2011.02.012

    Article  CAS  Google Scholar 

  29. Gabriel LP, Rodrigues AA, Macedo M, Jardini AL, Maciel Filho R (2017) Electrospun polyurethane membranes for tissue engineering applications. Mater Sci Eng: C 72:113–117. https://doi.org/10.1016/j.msec.2016.11.057

    Article  CAS  Google Scholar 

  30. Adnan S, Tuan Ismail TNM, Mohd Noor N, Nek Mat Din NSM, Ain Hanzah N, Shoot Kian Y, Abu Hassan H (2016) Development of flexible polyurethane nanostructured biocomposite foams derived from palm olein-based polyol. Adv Mater Sci Eng 2016:1–12. https://doi.org/10.1155/2016/4316424

    Article  CAS  Google Scholar 

  31. Gómez-Fernández S, Ugarte L, Peña-Rodriguez C, Zubitur M, Corcuera MÁ, Eceiza A (2016) Flexible polyurethane foam nanocomposites with modified layered double hydroxides. Appl Clay Sci 123:109–120. https://doi.org/10.1016/j.clay.2016.01.015

    Article  CAS  Google Scholar 

  32. Radice S, Turri S, Scicchitano M (2004) Fourier transform infrared studies on deblocking and crosslinking mechanisms of some fluorine containing monocomponent polyurethanes. Appl Spectroscop 58:535–542. https://doi.org/10.1366/000370204774103354

    Article  CAS  Google Scholar 

  33. Icin O, Vakifahmetoglu C (2021) Dye removal by polymer derived ceramic nanobeads. Ceram Int 47:27050–27057. https://doi.org/10.1016/j.ceramint.2021.06.118

    Article  CAS  Google Scholar 

  34. Stabler C, Reitz A, Stein P, Albert B, Riedel R, Ionescu E (2018) Thermal properties of SiOC glasses and glass ceramics at elevated temperatures. Materials 11:1–18

    Article  Google Scholar 

  35. Pena-Alonso R, Mariotto G, Gervais C, Babonneau F, Soraru GD (2007) New insights on the high-temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem Mater 19:5694–5702

    Article  CAS  Google Scholar 

  36. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, edition. Cambridge solid state science series

    Book  Google Scholar 

  37. Choudhary A, Pratihar SK, Agrawal AK, Behera SK (2018) Macroporous SiOC ceramics with dense struts by positive sponge replication technique. Adv Eng Mater 20:1–7

    Article  CAS  Google Scholar 

  38. Richardson JT, Peng Y, Remue D (2000) Properties of ceramic foam catalyst supports: pressure drop. Appl Catal A 204:19–32

    Article  CAS  Google Scholar 

  39. Li Z, Chen Z, Liu J, Fu Y, Liu C, Wang P, Jiang M, Lao C (2020) Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual Phys Prototyp 15:163–177. https://doi.org/10.1080/17452759.2019.1710919

    Article  Google Scholar 

  40. Choudhary A, Pratihar SK, Behera SK (2019) Single step processing of polymer derived macroporous SiOC ceramics with dense struts. Ceram Int 45:8063–8068. https://doi.org/10.1016/j.ceramint.2019.01.102

    Article  CAS  Google Scholar 

  41. Vakifahmetoglu C, Semerci T, Soraru GD (2020) Closed porosity ceramics and glasses. J Am Ceram Soc 103:2941–2969

    Article  CAS  Google Scholar 

  42. Prasanth AS, Krishnaraj V, Nampoothiri J, Sindhumathi R, Akthar Sadik MR, Escobedo JP, Shankar K (2022) Uniaxial compressive behavior of aa5083/sic co-continuous ceramic composite fabricated by gas pressure infiltration for armour applications. J Compos Sci 6:1–14

    Article  Google Scholar 

  43. Nazari E, Razavi SH, Boutorabi SMA (2010) Effect of filtration on the morphology and mechanical properties of Mg molten alloy entering the mould cavity. J Mater Process Technol 210:461–465

    Article  CAS  Google Scholar 

  44. Hashemi H, Raiszadeh R, Khodadad M (2015) Study and modification of naturally-pressurized running system: effect of cermic filter. Zugegriffen 20:2115–2122

    Google Scholar 

  45. Davami P, Kim SK, Varahram N, Yoon YO, Yeom GY (2012) Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al–Si–Mg alloys: statistical and image analysis. Mater Sci Eng, A 558:134–143

    Article  Google Scholar 

  46. Davami P, Kim SK, Tiryakioğlu M (2013) The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al–7% Si–Mg alloy castings. Mater Sci Eng, A 579:64–70

    Article  Google Scholar 

  47. Basuny FH, Ghazy M, Kandeil A-RY, El-Sayed MA (2016) Effect of casting conditions on the fracture strength of Al-5 Mg alloy castings. Adv in Mater Sci Eng 2016:1–8

    Article  Google Scholar 

  48. Ardekhani A, Raiszadeh R (2012) Removal of double oxide film defects by ceramic foam filters. J Mater Eng Perform 21:1352–1362

    Article  CAS  Google Scholar 

  49. Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes, and applications. Asm International

    Book  Google Scholar 

  50. Davila-Maldonado O, Adams A, Oliveira L, Alquist B, Morales RD (2008) Simulation of fluid and inclusions dynamics during filtration operations of ductile iron melts using foam filters. Metall and Mater Trans B 39:818–839

    Article  Google Scholar 

Download references

Acknowledgements

G.D. Sorarù and A. Kulkarni would like to acknowledge the financial support from the Italian Ministry of University and Research (MIUR) Department of Excellence 2018-2022 (DII-UNITN-Regenera project). D. Dispinar would like to thank Johan van Opsdal from Foseco R&D, Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cekdar Vakifahmetoglu.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerci, T., Dizdar, K.C., Kulkarni, A. et al. Polymer-derived ceramic molten metal filters. J Mater Sci 57, 14723–14734 (2022). https://doi.org/10.1007/s10853-022-07542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07542-9

Navigation