Skip to main content

Advertisement

Log in

Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper focuses on finding an optimum composition for the TiTaHfNbZr quinary high entropy alloy (HEA) system with an elastic modulus close to that of bone in order to attain a better biomechanical compatibility between the bone and the implant in orthopedic applications. To obtain the composition providing the desired structural match, machine learning (ML) tools were implemented in the current work instead of conventional trial-and-error methods. The ML algorithms utilized in this study were trained using experimental data available in the literature and then utilized to predict the optimum HEA compositions with the lowest elastic moduli. Consequently, the Ti23Ta10Hf27Nb12Zr28 and Ti28Ta10Hf30Nb14Zr18 compositions were predicted as the optimum HEA compositions with elastic moduli of 83.5 ± 2.9 and 87.4 ± 2.2 GPa, respectively. The materials were manufactured, and the elastic moduli were validated with nanoindentation experiments. The samples were also exposed to static immersion experiments in simulated body fluid (SBF) for 28 days to gain insight and information regarding the ion release and ensure that the new HEAs are biocompatible. The findings of the work reported herein demonstrate that the proposed ML model can successfully predict HEA compositions for an optimized biomechanical compatibility for orthopedic applications and warrant further biomedical research on the two new HEAs prior to their utility as orthopedic implant materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  CAS  Google Scholar 

  2. Li Y, Yang C, Zhao H et al (2014) New developments of ti-based alloys for biomedical applications. Materials (Basel) 7:1709–1800

    Article  Google Scholar 

  3. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  4. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477–486. https://doi.org/10.1007/s11661-002-0109-2

    Article  Google Scholar 

  5. Dai SJ, Wang Y, Chen F et al (2013) Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys. Trans Nonferrous Met Soc China (English Ed) 23:1299–1303. https://doi.org/10.1016/S1003-6326(13)62597-2

  6. Nasker P, Sinha A (2018) Titanium based bulk metallic glasses for biomedical applications. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  7. Gurel S, Yagci MB, Bal B, Canadinc D (2020) Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater Chem Phys 254:123377

    Article  CAS  Google Scholar 

  8. Gurel S, Yagci MB, Canadinc D et al (2020) Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Mater Sci Eng A 140456. https://doi.org/10.1016/j.msea.2020.140456

  9. Motallebzadeh A, Peighambardoust NS, Sheikh S et al (2019) Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics 113:106572. https://doi.org/10.1016/j.intermet.2019.106572

  10. Gurel S, Nazarahari A, Canadinc D et al (2021) Assessment of biocompatibility of novel TiTaHf-based high entropy alloys for utility in orthopedic implants. Mater Chem Phys 266:124573. https://doi.org/10.1016/j.matchemphys.2021.124573

    Article  CAS  Google Scholar 

  11. Sheikh S, Bijaksana MK, Motallebzadeh A et al (2018) Accelerated oxidation in ductile refractory high-entropy alloys. Intermetallics 97:58–66. https://doi.org/10.1016/j.intermet.2018.04.001

    Article  CAS  Google Scholar 

  12. George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4:515–534. https://doi.org/10.1038/s41578-019-0121-4

    Article  CAS  Google Scholar 

  13. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  14. Dai D, Xu T, Wei X et al (2020) Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comput Mater Sci 175:109618. https://doi.org/10.1016/j.commatsci.2020.109618

    Article  CAS  Google Scholar 

  15. Wen C, Zhang Y, Wang C et al (2019) Machine learning assisted design of high entropy alloys with desired property. Acta Mater 170:109–117. https://doi.org/10.1016/j.actamat.2019.03.010

    Article  CAS  Google Scholar 

  16. Nong ZS, Zhu JC, Cao Y et al (2014) Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater Sci Technol (United Kingdom) 30:363–369. https://doi.org/10.1179/1743284713Y.0000000368

    Article  CAS  Google Scholar 

  17. Guo NN, Wang L, Luo LS et al (2015) Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des 81:87–94. https://doi.org/10.1016/j.matdes.2015.05.019

    Article  CAS  Google Scholar 

  18. Wu YD, Cai YH, Wang T et al (2014) A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett 130:277–280. https://doi.org/10.1016/j.matlet.2014.05.134

    Article  CAS  Google Scholar 

  19. Yang X, Zhang Y, Liaw PK (2012) Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Proc Eng 36:292–298. https://doi.org/10.1016/j.proeng.2012.03.043

    Article  CAS  Google Scholar 

  20. Song Y, Xu DS, Yang R et al (1999) Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater Sci Eng A 260:269–274. https://doi.org/10.1016/s0921-5093(98)00886-7

    Article  Google Scholar 

  21. Yuan Y, Wu Y, Yang Z et al (2019) Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater Res Lett 7:225–231. https://doi.org/10.1080/21663831.2019.1584592

    Article  CAS  Google Scholar 

  22. Huiskes R, Weinans H, Van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res, pp 124–134. https://doi.org/10.1097/00003086-199201000-00014

  23. Wang SP, Xu J (2017) TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater Sci Eng C 73:80–89. https://doi.org/10.1016/j.msec.2016.12.057

    Article  CAS  Google Scholar 

  24. Jiang S, Lin Z, Xu H, Sun Y (2018) Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys. J Alloys Compd 741:826–833. https://doi.org/10.1016/j.jallcom.2018.01.247

    Article  CAS  Google Scholar 

  25. Sheikh S, Shafeie S, Hu Q et al (2016) Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys 120:164902. https://doi.org/10.1063/1.4966659

    Article  CAS  Google Scholar 

  26. Sakaguchi N, Mitsuo N, Akahori T et al (2004) Effects of alloying elements on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical applications. In: Materials Science Forum. Trans Tech Publications Ltd, pp 1269–1272

  27. Sakaguchi N, Niinomi M, Akahori T et al (2005) Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr. Materials Science and Engineering C. Elsevier, Amsterdam, pp 370–376

    Google Scholar 

  28. Sakaguchi N, Niinomi M, Akahori T et al (2005) Relationships between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr system alloys. Materials Science and Engineering C. Elsevier, Amsterdam, pp 363–369

    Google Scholar 

  29. Ozaki T, Matsumoto H, Watanabe S, Hanada S (2004) Beta ti alloys with low young’s modulus. In: Materials Transactions. Japan Institute of Metals (JIM), pp 2776–2779

  30. Ye YF, Wang Q, Lu J et al (2016) High-entropy alloy: challenges and prospects. Mater Today 19:349–362

    Article  CAS  Google Scholar 

  31. Kaufmann K, Vecchio KS (2020) Searching for high entropy alloys: a machine learning approach. Acta Mater 198:178–222. https://doi.org/10.1016/j.actamat.2020.07.065

    Article  CAS  Google Scholar 

  32. Schleder GR, Padilha ACM, Acosta CM et al (2019) From DFT to machine learning: recent approaches to materials science—a review. J Phys Mater 2:032001. https://doi.org/10.1088/2515-7639/ab084b

    Article  CAS  Google Scholar 

  33. Zhang J, Liu X, Bi S et al (2020) Robust data-driven approach for predicting the configurational energy of high entropy alloys. Mater Des 185:108247. https://doi.org/10.1016/j.matdes.2019.108247

    Article  CAS  Google Scholar 

  34. Himanen L, Geurts A, Foster AS, Rinke P (2019) Data-driven materials science: status, challenges, and perspectives. Adv Sci 6:1900808

    Article  Google Scholar 

  35. Schmidt J, Marques MALMRG, Botti S, Marques MALMRG (2019) Recent advances and applications of machine learning in solid-state materials science. npj Comput Mater 5:1–36. https://doi.org/10.1038/s41524-019-0221-0

  36. Butler KT, Davies DW, Cartwright H et al (2018) Machine learning for molecular and materials science. Nature 559:547–555

    Article  CAS  Google Scholar 

  37. Kelleher JD, Mac NB, D’Arcy A (2020) Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  38. Alpaydin E (2020) Introduction to machine learning. MIT Press, Cambridge

    Google Scholar 

  39. Islam N, Huang W, Zhuang HL (2018) Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci 150:230–235. https://doi.org/10.1016/j.commatsci.2018.04.003

    Article  CAS  Google Scholar 

  40. Huang W, Martin P, Zhuang HL (2019) Machine-learning phase prediction of high-entropy alloys. Acta Mater 169:225–236. https://doi.org/10.1016/j.actamat.2019.03.012

    Article  CAS  Google Scholar 

  41. Zhou Z, Zhou Y, He Q et al (2019) Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Comput Mater 5:1–9. https://doi.org/10.1038/s41524-019-0265-1

  42. Machaka R (2021) Machine learning-based prediction of phases in high-entropy alloys. Comput Mater Sci 188:110244. https://doi.org/10.1016/j.commatsci.2020.110244

    Article  CAS  Google Scholar 

  43. Lee SY, Byeon S, Kim HS et al (2021) Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater Des 197:109260. https://doi.org/10.1016/j.matdes.2020.109260

    Article  CAS  Google Scholar 

  44. Zhang L, Chen H, Tao X et al (2020) Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Mater Des 193:108835. https://doi.org/10.1016/j.matdes.2020.108835

    Article  CAS  Google Scholar 

  45. Pei Z, Yin J, Hawk JA, et al (2020) Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput Mater 6. https://doi.org/10.1038/s41524-020-0308-7

  46. Chang YJ, Jui CY, Lee WJ, Yeh AC (2019) Prediction of the composition and hardness of high-entropy alloys by machine learning. Jom 71:3433–3442. https://doi.org/10.1007/s11837-019-03704-4

    Article  CAS  Google Scholar 

  47. Diao Y, Yan L, Gao K (2021) Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. Mater Des 198:109326. https://doi.org/10.1016/j.matdes.2020.109326

    Article  CAS  Google Scholar 

  48. Nazarahari A, Canadinc D (2020) Prediction of the NiTi shape memory alloy composition with the best corrosion resistance for dental applications utilizing artificial intelligence. Mater Chem Phys 258:123974. https://doi.org/10.1016/j.matchemphys.2020.123974

    Article  CAS  Google Scholar 

  49. Xue D, Xue D, Yuan R et al (2017) An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 125:532–541. https://doi.org/10.1016/j.actamat.2016.12.009

    Article  CAS  Google Scholar 

  50. Lookman T, Balachandran PV, Xue D et al (2017) Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci 21:121–128. https://doi.org/10.1016/j.cossms.2016.10.002

    Article  CAS  Google Scholar 

  51. Catal AA, Bedir E, Yilmaz R, Canadinc D (2022) Design of a NiTiHf shape memory alloy with an austenite finish temperature beyond 400 °C utilizing artificial intelligence. J Alloys Compd 904:164135. https://doi.org/10.1016/j.jallcom.2022.164135

    Article  CAS  Google Scholar 

  52. Dai FZ, Wen B, Sun Y et al (2020) Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J Mater Sci Technol 43:168–174. https://doi.org/10.1016/j.jmst.2020.01.005

    Article  Google Scholar 

  53. Dai FZ, Sun Y, Wen B et al (2021) Temperature dependent thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: molecular dynamics simulation by deep learning potential. J Mater Sci Technol 72:8–15. https://doi.org/10.1016/j.jmst.2020.07.014

    Article  CAS  Google Scholar 

  54. Guo S (2015) Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol (United Kingdom) 31:1223–1230. https://doi.org/10.1179/1743284715Y.0000000018

    Article  CAS  Google Scholar 

  55. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  56. Singh AK, Kumar N, Dwivedi A, Subramaniam A (2014) A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 53:112–119. https://doi.org/10.1016/j.intermet.2014.04.019

    Article  CAS  Google Scholar 

  57. Wang Z, Huang Y, Yang Y et al (2015) Atomic-size effect and solid solubility of multicomponent alloys. Scr Mater 94:28–31. https://doi.org/10.1016/j.scriptamat.2014.09.010

    Article  CAS  Google Scholar 

  58. Mizutani U, Sato H (2016) Determination of electrons per atom ratio for transition metal compounds studied by FLAPW-Fourier calculations. Philos Mag 96:3075–3096. https://doi.org/10.1080/14786435.2016.1224946

    Article  CAS  Google Scholar 

  59. Zhang Y, Zuo TT, Tang Z et al (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  60. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829. https://doi.org/10.2320/matertrans.46.2817

    Article  CAS  Google Scholar 

  61. Gregorutti B, Michel B, Saint-Pierre P (2017) Correlation and variable importance in random forests. Stat Comput 27:659–678. https://doi.org/10.1007/s11222-016-9646-1

    Article  Google Scholar 

  62. Gómez-Ramírez J, Ávila-Villanueva M, Fernández-Blázquez MÁ (2020) Selecting the most important self-assessed features for predicting conversion to mild cognitive impairment with random forest and permutation-based methods. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-77296-4

    Article  CAS  Google Scholar 

  63. Cournapeau D, Pedregosa F, Michel V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  64. Toloşi L, Lengauer T (2011) Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics 27:1986–1994. https://doi.org/10.1093/bioinformatics/btr300

    Article  CAS  Google Scholar 

  65. James G, Witten D, Hastie T, Tibshiran R (2013) An introduction to statistical learning with applications in R. Springer, New York

    Book  Google Scholar 

  66. Shaikh SM, Hariharan VS, Yadav SK, Murty BS (2020) CALPHAD and rule-of-mixtures: a comparative study for refractory high entropy alloys. Intermetallics 127:106926. https://doi.org/10.1016/j.intermet.2020.106926

    Article  CAS  Google Scholar 

  67. Yang T, Zhao YL, Liu WH et al (2018) Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning. Mater Res Lett 6:600–606. https://doi.org/10.1080/21663831.2018.1518276

    Article  CAS  Google Scholar 

  68. Zhao W, Cheng JL, Feng SD et al (2016) Intrinsic correlation between elastic modulus and atomic bond stiffness in metallic glasses. Mater Lett 175:227–230. https://doi.org/10.1016/j.matlet.2016.03.037

    Article  CAS  Google Scholar 

  69. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  70. Astm G (2004) G 31–72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. Annu B Stand

  71. Ming L, Manghnani MH, Katahara KW (1998) Investigation of a→w transformation in the Zr-Hf system to 42 GPa. J Appl Phys 52:1332. https://doi.org/10.1063/1.329760

    Article  Google Scholar 

  72. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  73. Wang M, Ma ZL, Xu ZQ, Cheng XW (2021) Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr Mater 191:131–136. https://doi.org/10.1016/j.scriptamat.2020.09.027

    Article  CAS  Google Scholar 

  74. Chen SY, Tong Y, Tseng KK et al (2019) Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr Mater 158:50–56. https://doi.org/10.1016/j.scriptamat.2018.08.032

    Article  CAS  Google Scholar 

  75. Schuh B, Völker B, Todt J et al (2018) Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater 142:201–212. https://doi.org/10.1016/J.ACTAMAT.2017.09.035

    Article  CAS  Google Scholar 

  76. Pickering EJ, Jones NG (2016) High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev 61:183–202. https://doi.org/10.1080/09506608.2016.1180020

    Article  CAS  Google Scholar 

  77. Zhou S, You Y, Zhang J, Cao Y (2021) Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Y-Zn-Zr rolled alloy for biomedical applications. Trans Indian Inst Met, pp 1–10. https://doi.org/10.1007/s12666-021-02401-8

  78. Yao Y, Jin Y, Gao W et al (2021) Corrosion behavior of AlFeCrCoNiZrx high-entropy alloys in 0.5 M sulfuric acid solution. Metals (Basel) 11:1471. https://doi.org/10.3390/met11091471

  79. Masemola K, Popoola P, Malatji N (2020) The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy. J Mater Res Technol 9:5241–5251. https://doi.org/10.1016/j.jmrt.2020.03.050

    Article  CAS  Google Scholar 

  80. Mirea R, Cucuruz AT, Ceatra LC et al (2021) In-depth comparative assessment of different metallic biomaterials in simulated body fluid. Materials (Basel) 14:2774. https://doi.org/10.3390/ma14112774

    Article  CAS  Google Scholar 

  81. Liao H, Wurtz T, Li J (1999) Influence of titanium ion on mineral formation and properties of osteoid nodules in rat calvaria cultures. J Biomed Mater Res 47:220–227. https://doi.org/10.1002/(SICI)1097-4636(199911)47:2%3c220::AID-JBM12%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  82. Cabibbo M, Ciccarelli D, Spigarelli S (2013) Nanoindentation hardness measurement in piling up SiO2 coating. Physics Procedia. Elsevier, Amsterdam, pp 100–112

    Google Scholar 

  83. Saha R, Nix WD (2001) Solt films on hard substrates—nanoindentation of tungsten films on sapphire substrates. Mater Sci Eng A 319–321:898–901. https://doi.org/10.1016/S0921-5093(01)01076-0

    Article  Google Scholar 

  84. Shaysultanov DG, Stepanov ND, Salishchev GA, Tikhonovsky MA (2017) Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x = 0.25, 0.5, 0.75, 1). Phys Met Metallogr 2017 1186 118:579–590. https://doi.org/10.1134/S0031918X17060084

Download references

Acknowledgements

The authors thank Dr. Hadi Jahangiri for his help with the XRD measurements and Dr. Gulsu Simsek for her help with the ICP-MS analyses conducted at the Koç University Surface Science and Technology Center (KUYTAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Canadinc.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, H.C., Bedir, E., Yilmaz, R. et al. Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants. J Mater Sci 57, 11151–11169 (2022). https://doi.org/10.1007/s10853-022-07363-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07363-w

Navigation