Skip to main content

Advertisement

Log in

Dual physical cross-linked self-healing elastomer for the triple shape memory

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-healing materials can autonomously heal injury like organism, which have attracted increasing attention from academics and industry engineers. However, the mechanical property and self-healing ability of the self-healing material is hard to be reconciled. Here, we report a simple approach to fabricate fast self-healing materials with high mechanical strength and improved triple shape memory effect by incorporation of nanoclay into a polymer matrix. The nanocomposite was prepared by in situ polymerization of poly(ethylene glycol) 400 methyl ether acrylate (mPEG-acrylate) and acryloylmorpholine (ACMO) in the presence of nanoclay. The thus obtained composite exhibits remarkable mechanical properties of an optimistic maximum tensile strength of ~ 8.9 MPa, and high healing efficiency of ~ 99.6% can be achieved after healing for only 1 min at room temperature. This strategy provides insights for the preparation of high-strength, multi-shape memory and fast self-healing composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ha YM, Kim YO, Ahn S, Lee SK, Lee JS, Park M, Chung JW, Jung YC (2019) Robust and stretchable self-healing polyurethane based on polycarbonate diol with different soft-segment molecular weight for flexible devices. Eur Polym J 118:36–44. https://doi.org/10.1016/j.eurpolymj.2019.05.031

    Article  CAS  Google Scholar 

  2. Li JP, Yang Y, Chen ZY, Lei S, Shen MK, Zhang T, Lan XK, Qin YJ, Ou-Yang J, Yang XF, Chen Y, Wang ZY, Zhu BP, (2020) Self-healing: a new skill unlocked for ultrasound transducer. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104348

  3. Yan S, Zhang G, Jiang H, Li F, Zhang L, Xia Y, Wang Z, Wu Y, Li H (2019) Highly stretchable room-temperature self-healing conductors based on wrinkled graphene films for flexible electronics. ACS Appl Mater Interfaces 11:10736–10744. https://doi.org/10.1021/acsami.9b00274

    Article  CAS  Google Scholar 

  4. Gao SS, Cheng ZH, Zhou X, Liu YP, Wang JF, Wang CP, Chu FX, Xu F, Zhang DH (2020) Fabrication of lignin based renewable dynamic networks and its applications as self-healing, antifungal and conductive adhesives. Chem Eng J 394:124896. https://doi.org/10.1016/j.cej.2020.124896

    Article  CAS  Google Scholar 

  5. Bian W, Wang W, Yang Y (2017) A self-healing and electrical-tree-inhibiting epoxy composite with hydrogen-bonds and SiO(2) particles. Polymers-Basel 9:431. https://doi.org/10.3390/polym9090431

    Article  CAS  Google Scholar 

  6. Macedo Lima GR, Orozco F, Picchioni F, Moreno-Villoslada I, Pucci A, Bose RK, Araya-Hermosilla R (2019) Electrically self-healing thermoset MWCNTs composites based on diels-alder and hydrogen bonds. Polymers-Basel 11:1185. https://doi.org/10.3390/polym11111885

    Article  CAS  Google Scholar 

  7. Mo SR, Lai JC, Zeng KY, Wang DP, Li CH, Zuo CH (2019) New insights into the mechanical and self-healing properties of polymers cross-linked by Fe(iii)-2,6-pyridinedicarboxamide coordination complexes. Polym Chem-UK 10:362–371. https://doi.org/10.1039/c8py01233d

    Article  CAS  Google Scholar 

  8. Tan PS, Somashekar AA, Casari P, Bhattacharyya D (2019) Healing efficiency characterization of self-repairing polymer composites based on damage continuum mechanics. Compos Struct 208:367–376. https://doi.org/10.1016/j.compstruct.2018.09.091

    Article  Google Scholar 

  9. Thangavel G, Tan MWM, Lee PS (2019) Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg 6:29. https://doi.org/10.1186/s40580-019-0199-9

    Article  CAS  Google Scholar 

  10. Cheng Y, Xiao X, Pan K, Pang H (2020) Development and application of self-healing materials in smart batteries and supercapacitors. Chem Eng J 380:122565. https://doi.org/10.1016/j.cej.2019.122565

    Article  CAS  Google Scholar 

  11. Kanu NJ, Gupta E, Vates UK, Singh GK (2019) Self-healing composites: a state-of-the-art review. Compos Part A-Appl S 121:474–486. https://doi.org/10.1016/j.compositesa.2019.04.012

    Article  CAS  Google Scholar 

  12. Wang Y, Jiang D, Zhang L, Li B, Sun C, Yan H, Wu Z, Liu Z, Zhang Z, Fan J, Hou H, Ding T, Guo Z (2020) Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers. Nanotechnology 31:025704. https://doi.org/10.1088/1361-6528/ab4743

    Article  CAS  Google Scholar 

  13. Menikheim SD, Lavik EB (2020) Self-healing biomaterials: The next generation is nano. Wires Nanomed Nanobi 12:e1641. https://doi.org/10.1002/wnan.1641

    Article  Google Scholar 

  14. Lai JC, Jia XY, Wang DP, Deng YB, Zheng P, Li CH, Zuo JL, Bao Z (2019) Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat Commun 10:1164. https://doi.org/10.1038/s41467-019-09130-z

    Article  CAS  Google Scholar 

  15. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522. https://doi.org/10.1016/j.progpolymsci.2008.02.001

    Article  CAS  Google Scholar 

  16. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong JP (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28:4884–4890. https://doi.org/10.1002/adma.201600466

    Article  CAS  Google Scholar 

  17. Kim SM, Jeon H, Shin SH, Park SA, Jegal J, Hwang SY, Oh DX, Park J (2018) Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv Mater 30:1705145. https://doi.org/10.1002/adma.201705145

    Article  CAS  Google Scholar 

  18. Zhu B, Jasinski N, Benitez A, Noack M, Park D, Goldmann AS, Barner-Kowollik C, Walther A (2015) Hierarchical nacre mimetics with synergistic mechanical properties by control of molecular interactions in self-healing polymers. Angew Chem Int Ed Engl 54:8653–8657. https://doi.org/10.1002/anie.201502323

    Article  CAS  Google Scholar 

  19. Cao J, Lu C, Zhuang J, Liu M, Zhang X, Yu Y, Tao Q (2017) Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew Chem Int Ed Engl 56:8795–8800. https://doi.org/10.1002/anie.201704217

    Article  CAS  Google Scholar 

  20. Chen J, Li FZ, Luo YL, Shi YJ, Ma XF, Zhang M, Boukhvalov DW, Luo ZY (2019) A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism. J Mater Chem A 7:15207–15214. https://doi.org/10.1039/c9ta03775f

    Article  CAS  Google Scholar 

  21. Yanagisawa Y, Nan Y, Okuro K, Aida T (2018) Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359:72–76. https://doi.org/10.1126/science.aam7588

    Article  CAS  Google Scholar 

  22. Du WN, Jin Y, Shi LJ, Shen YC, Lai SQ, Zhou YT (2020) NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos Part B-Eng 195:108092. https://doi.org/10.1016/j.compositesb.2020.108092

    Article  CAS  Google Scholar 

  23. Zhai L, Narkar L, Ahn K (2020) Self-healing polymers with nanomaterials and nanostructures. Nano Today 30:100826. https://doi.org/10.1016/j.nantod.2019.100826

    Article  CAS  Google Scholar 

  24. Muradyan H, Mozhdehi D, Guan Z (2020) Self-healing magnetic nanocomposites with robust mechanical properties and high magnetic actuation potential prepared from commodity monomers via graft-from approach. Polym Chem 11:1292–1297. https://doi.org/10.1039/c9py01700c

    Article  CAS  Google Scholar 

  25. Liu HL, Chung HY (2016) Self-Healing properties of lignin-containing nanocomposite: synthesis of lignin-graft-poly(5-acetylaminopentyl acrylate) via RAFT and click chemistry. Macromolecules 49:7246–7256. https://doi.org/10.1038/s41467-019-10061-y

    Article  CAS  Google Scholar 

  26. Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee PS (2019) Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun 10:2158. https://doi.org/10.1038/s41467-019-10061-y

    Article  CAS  Google Scholar 

  27. Vijay Kumar V, Balaganesan G, Lee JKY, Neisiany RE, Surendran S, Ramakrishna S (2019) A review of recent advances in nanoengineered polymer composites. Polymers-Basel 11:644. https://doi.org/10.3390/polym11040644

    Article  CAS  Google Scholar 

  28. Guadagno L, Vertuccio L, Naddeo C, Calabrese E, Barra G, Raimondo M, Sorrentino A, Binder WH, Michael P, Rana S (2019) Reversible self-healing carbon-based nanocomposites for structural applications. Polymers-Basel 11:903. https://doi.org/10.3390/polym11050903

    Article  CAS  Google Scholar 

  29. Guadagno L, Vertuccio L, Naddeo C, Calabrese E, Barra G, Raimondo M, Sorrentino A, Binder WH, Michael P, Rana S (2019) Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos Part B-Eng 157:1–13. https://doi.org/10.1016/j.compositesb.2018.08.082

    Article  CAS  Google Scholar 

  30. Yang SW, Wang S, Du XS, Cheng X, Wang HB, Du ZL (2020) Mechanically and thermo-driven self-healing polyurethane elastomeric composites using inorganic–organic hybrid material as crosslinker. Polym Chem 11:1161–1170. https://doi.org/10.1039/c9py01531k

    Article  CAS  Google Scholar 

  31. Liang B, Zhong Z, Jia E, Zhang G, Su Z (2019) Transparent and scratch-resistant antifogging coatings with rapid self-healing capability. ACS Appl Mater Interfaces 11:30300–30307. https://doi.org/10.1021/acsami.9b09610

    Article  CAS  Google Scholar 

  32. Wan T, Chen DJ (2018) Preparation of β-cyclodextrin reinforced waterborne polyurethane nanocomposites with excellent mechanical and self-healing property. Compos Sci Technol 168:55–62. https://doi.org/10.1016/j.compscitech.2018.08.049

    Article  CAS  Google Scholar 

  33. Amaral AJR, Emamzadeh M, Pasparakis G (2018) Transiently malleable multi-healable hydrogel nanocomposites based on responsive boronic acid copolymers. Polym Chem 9:525–537. https://doi.org/10.1039/c7py01202k

    Article  CAS  Google Scholar 

  34. Menon AV, Madras G, Bose S (2019) Mussel-inspired self-healing polyurethane with “flower-like” magnetic MoS2 as efficient microwave absorbers. ACS Appl Polym Mater 1:2417–2429. https://doi.org/10.1021/acsapm.9b00538

    Article  CAS  Google Scholar 

  35. Oh CR, Lee SH, Park JH, Lee DS (2019) Thermally self-healing graphene-nanoplate/polyurethane nanocomposites via diels(-)alder reaction through a one-shot process. Nanomaterials (Basel) 9:434. https://doi.org/10.3390/nano9030434

    Article  CAS  Google Scholar 

  36. Xu YR, Chen DJ (2017) Self-healing polyurethane/attapulgite nanocomposites based on disulfide bonds and shape memory effect. Mater Chem Phys 195:40–48. https://doi.org/10.1016/j.matchemphys.2017.04.007

    Article  CAS  Google Scholar 

  37. Du G, Mao A, Yu J, Hou J, Zhao N, Han J, Zhao Q, Gao W, Xie T, Bai H (2019) Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat Commun 10:800. https://doi.org/10.1038/s41467-019-08643-x

    Article  CAS  Google Scholar 

  38. Yu HT, Feng YY, Gao L, Chen C, Zhang ZX, Feng W (2020) Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53:7161–7170. https://doi.org/10.1021/acs.macromol.9b02544

    Article  CAS  Google Scholar 

  39. Zhuo SY, Liu YX, Zhou LL, Feng XQ (2018) Enhanced dual-responsive shape memory nanocomposites with rapid and efficient self-healing capability. J Mater Sci 53:13936. https://doi.org/10.1007/s10853-018-2591-y

    Article  CAS  Google Scholar 

  40. Yan S, Zhang GZ, Jin XH et al (2018) Rapid room-temperature self-healing conductive nanocomposites based on naturally dried graphene aerogels. Journal of Materials Chemistry C 6:10184. https://doi.org/10.1039/c8tc03692f

    Article  CAS  Google Scholar 

  41. Wang C, Liu N, Allen R, Tok JB, Wu Y, Zhang F, Chen Y, Bao Z (2013) A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25:5785–5790. https://doi.org/10.1002/adma.201302962

    Article  CAS  Google Scholar 

  42. Feng XQ, Zhang GZ, Zhuo SY, Jiang HY, Shi JL, Li FB, Li HJ (2016) Dual responsive shape memory polymer/clay nanocomposites. Compos Sci Technol 129:53–60. https://doi.org/10.1016/j.compscitech.2016.04.008

    Article  CAS  Google Scholar 

  43. Zhao WP, Liu YY, Zhang ZX, Feng XQ, Xu H, Xu J, Hu J, Wang SG, Wu YM, Yan SK (2020) High-strength, fast self-healing, aging-insensitive elastomers with shape memory effect. ACS Appl Mater Interfaces 12:35445–35452. https://doi.org/10.1021/acsami.0c09045

    Article  CAS  Google Scholar 

  44. PerovaTS VJK, Xu H (1997) Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA. Colloid Polym Sci 275:323–332. https://doi.org/10.1007/s003960050089

    Article  Google Scholar 

  45. Jasiurkowska-Delaporte M, Kossack W, Kipnusu WK, Sangoro JR, Iacob C, Kremer F (2018) Glassy dynamics of two poly(ethylene glycol) derivatives in the bulk and in nanometric confinement as reflected in its inter- and intra-molecular interactions. J Chem Phys. https://doi.org/10.1063/1.5039518

    Article  Google Scholar 

  46. Ogundiran MB, Kumar S (2015) Synthesis and characterisation of geopolymer from Nigerian Clay. Appl Clay Sci 108:173–181. https://doi.org/10.1016/j.clay.2015.02.022

    Article  CAS  Google Scholar 

  47. Lu CW, Ling Z, Wang CP, Wang JF, Yong Q, Chu FX (2022) Multiple hydrogen bonding interactions toward rapidly self-healing, photothermal conversion elastomer composites. Compos Part B Eng 4:3. https://doi.org/10.1016/j.compositesb.2021.109428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Key Natural Science Foundation of YIT (2020YITSRFZD101) and the Key Science and Technology Project of Hebei Education Department (ZD2019301).

Author information

Authors and Affiliations

Authors

Contributions

JX was responsible for conceptualization, investigation, data curation, visualization, writing the original draft, and writing, reviewing and editing. Z-XZ was involved in investigation, formal analysis and visualization. Y-JN, Y-XL and YF carried out investigation. W-PZ took part in formal analysis, writing the original draft, resources, supervision and funding acquisition. X-qF participated in validation, data curation, writing the original draft, conceptualization, validation, writing, reviewing and editing, project administration and funding acquisition.

Corresponding authors

Correspondence to Wenpeng Zhao or Xianqi Feng.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3541 kb)

Supplementary file2 (MP4 50656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, Z., Nie, Y. et al. Dual physical cross-linked self-healing elastomer for the triple shape memory. J Mater Sci 57, 11430–11442 (2022). https://doi.org/10.1007/s10853-022-07243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07243-3

Navigation