Skip to main content

Advertisement

Log in

Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, graphite nanoplatelets (GNPs)-based polymer nanocomposites were reviewed. This review mainly discusses various synthesis techniques for making graphite nanoplatelets (GNPs) including dispersion of GNPs in polymers, functionalization and producing GNPs polymer nanocomposites. In addition, their critical morphology and rheological, mechanical, electrical, and thermal conductivity as well as gas barrier properties were explained. It was found that when GNPs were properly incorporated into the polymer matrix, they can enhance the properties of the host polymer at extreme conditions. Moreover, surface modification of GNPs by covalent and non-covalent functionalization has been explored as a new platform for realizing structure–property interactions of polymer nanocomposites. Proposed predictive modeling and analysis methods on the mechanical, electrical, and thermal conductivities and gas barrier properties of GNPs/polymer nanocomposites were also disclosed considering, in particular, GNPs geometry and orientation in polymers. It was concluded that GNPs added to thermoset and thermoplastic polymer nanocomposites exhibit conceivable developments in advanced engineering uses, including electronics, ultra-sensitive sensors, membranes, energy storage, wearable technology, aerospace and biomedical.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright© 2019 Elsevier, c Hexagonal (2H) GNPs with graphene layers stacked in translational …ABAB… sequence with room temperature 0.336 nm perpendicular interplanar distance [35]

Figure 3

Copyright© 2016 John Wiley and Son

Figure 4

Copyright© 2019 Elsevier

Figure 5

Copyright© 2016 American Chemical Society

Figure 6

Copyright© 2016 Elsevier

Figure 7

Copyright© 2015 Elsevier

Figure 8 

Copyright© 2019 Elsevier

Figure 9
Figure 10
Figure 11

Copyright© 2017 American Chemical Society

Figure 12

Copyright© 2017 American Chemical Society

Figure 13
Figure 14
Figure 15

Copyright© 2015 Elsevier

Figure 16

Copyright© 2018 John Wiley and Sons

Figure 17

Copyright© 2007 American Chemical Society

Figure 18

Copyright© 2011 Elsevier

Figure 19

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ABS:

Acrylonitrile butadiene styrene

AFM:

Atomic force microscopy

APTES:

3-Aminopropyltriethoxysilane

APTMS:

3-Aminopropyletrimethoxysilane

C:

Carbon

CF:

Carbon fiber

CFRP:

Carbon fiber-reinforced plastic

CNC:

Cellulose nanocrystals

CNTs:

Carbon nanotubes

CPCs:

Conductive polymer composites

CS:

Chitosan

CTBN:

Carboxyl terminated butadiene acrylonitrile

CVD:

Chemical vapor deposition

FTIR:

Fourier transforms infrared spectroscopy

f-GNPs:

Functionalized graphene nanoplatelets

f-GNSs:

Functionalized graphene nanosheets

GICs:

Graphene-intercalated compounds

GNPs:

Graphite nanoplatelets

GO:

Graphene oxide

H2SO4 :

Sulfuric acid

HDPE:

High-density polyethylene

HNO3 :

Nitric acid

H3PO4 :

Phosphoric acid

ILSS:

Interlaminar shear strength

K2SO4 :

Potassium Sulphate

KOH:

Potassium hydroxide

LPE:

Liquid-phase exfoliation

MGPs:

Multi-graphene platelets

MWCNTs:

Multi-walled carbon nanotubes

NCA:

Nano carbon aerogels

(NH4)2S2O8 :

Ammonium persulfate

Na2SO4 :

Sodium sulfate

NH4Cl:

Ammonium chloride

NaNO3 :

Sodium nitrate

NaClO4 :

Sodium perchlorate

PA:

Polyamide

PC:

Polycarbonate

PES:

Polyether sulfone

PET:

Polyethylene terephthalate

PEEAMA:

Poly (ethylene-co-ethyl acrylate-co-maleic anhydride)

PP:

Polypropylene

PNCs:

Polymer nanocomposites

PS:

Polystyrene

PU:

Polyurethane

RC:

Regenerated cellulose

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TMP:

Trimethyl phosphate

UHMWPE:

Ultra-high molecular weight polyethylene

VARI:

Vacuum-assisted resin infusion

VARTM:

Vacuum-assisted resin transfer molding

ZnO:

Zinc oxide

References

  1. Paszkiewicz S, Szymczyk A (2019) Graphene-based nanomaterials and their polymer nanocomposites. In: Karak N (ed) Nanomaterials and polymer nanocomposites. Elsevier, New York, pp 177–216. https://doi.org/10.1016/b978-0-12-814615-6.00006-0

    Chapter  Google Scholar 

  2. Kausar A, Rafique I, Muhammad B (2017) Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym-Plast Technol Eng 56(13):1438–1456. https://doi.org/10.1080/03602559.2016.1276594

    Article  CAS  Google Scholar 

  3. Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N (2020) Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv Funct Mater 30(23):2000293. https://doi.org/10.1002/adfm.202000293

    Article  CAS  Google Scholar 

  4. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15):3797–3809. https://doi.org/10.1016/j.polymer.2009.05.038

    Article  CAS  Google Scholar 

  5. Xiang D, Wang L, Tang Y, Harkin-Jones E, Zhao C, Wang P, Li Y (2018) Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures. Polymer 158:308–319. https://doi.org/10.1016/j.polymer.2018.11.007

    Article  CAS  Google Scholar 

  6. Muller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bolz U, Perez G, Jesdinszki M, Lindner M, Scheuerer Z, Castello S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging. Automot Solar Energy Fields Nanomater (Basel) 7(4):74. https://doi.org/10.3390/nano7040074

    Article  CAS  Google Scholar 

  7. Abdullah SI, Ansari MNM (2019) Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J 11(2):151–156. https://doi.org/10.1016/j.hbrcj.2014.06.001

    Article  Google Scholar 

  8. Bilisik K, Akter M (2021) Graphene nanoplatelets/epoxy nanocomposites: a review on functionalization, characterization techniques, properties, and applications. J Reinf Plast Compos. https://doi.org/10.1177/07316844211049277

    Article  Google Scholar 

  9. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  10. Bilisik K, Akter M (2021) Graphene nanocomposites: a review on processes, properties, and applications. J Ind Text. https://doi.org/10.1177/15280837211024252

    Article  Google Scholar 

  11. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  13. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817. https://doi.org/10.1016/j.carbon.2008.02.008

    Article  CAS  Google Scholar 

  14. Kim H, Thomas Hahn H, Viculis LM, Gilje S, Kaner RB (2007) Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon 45(7):1578–1582. https://doi.org/10.1016/j.carbon.2007.02.035

    Article  CAS  Google Scholar 

  15. Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499. https://doi.org/10.1016/j.carbon.2008.10.031

    Article  CAS  Google Scholar 

  16. Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452. https://doi.org/10.1016/j.carbon.2007.03.029

    Article  CAS  Google Scholar 

  17. Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017) Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 117:1826. https://doi.org/10.1021/acs.chemrev.6b00520

    Article  CAS  Google Scholar 

  18. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333. https://doi.org/10.1016/j.carbon.2015.11.018

    Article  CAS  Google Scholar 

  19. Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Membr Sci 514:595–612. https://doi.org/10.1016/j.memsci.2016.05.026

    Article  CAS  Google Scholar 

  20. Qi X, Pu KY, Li H, Zhou X, Wu S, Fan QL, Liu B, Boey F, Huang W, Zhang H (2010) Amphiphilic graphene composites. Angew Chem Int Ed Engl 49(49):9426–9429. https://doi.org/10.1002/anie.201004497

    Article  CAS  Google Scholar 

  21. Geim AK, Novoslove KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  22. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. https://doi.org/10.1038/nature11458

    Article  CAS  Google Scholar 

  23. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  24. Ma Y, Zhi L (2019) Graphene-based transparent conductive films: material systems. Prep Appl Small Methods 3(1):1800199. https://doi.org/10.1002/smtd.201800199

    Article  CAS  Google Scholar 

  25. Wang T-Y, Tseng P-Y, Tsai J-L (2018) Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. J Compos Mater 53(6):835–847. https://doi.org/10.1177/0021998318791681

    Article  CAS  Google Scholar 

  26. Cataldi P, Athanassiou A, Bayer I (2018) Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl Sci 8(9):1438. https://doi.org/10.3390/app8091438

    Article  CAS  Google Scholar 

  27. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43(15):5092–5101. https://doi.org/10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  28. Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614. https://doi.org/10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  29. Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734. https://doi.org/10.1016/j.carbon.2007.05.010

    Article  CAS  Google Scholar 

  30. Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145. https://doi.org/10.1016/j.carbon.2011.10.026

    Article  CAS  Google Scholar 

  31. Chiou Y-C, Chou H-Y, Shen M-Y (2019) Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites. Mater Des. https://doi.org/10.1016/j.matdes.2019.107869

    Article  Google Scholar 

  32. Jarosinski L, Rybak A, Gaska K, Kmita G, Porebska R, Kapusta C (2017) Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Mater Sci-Pol 35(2):382–389. https://doi.org/10.1515/msp-2017-0028

    Article  CAS  Google Scholar 

  33. Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004. https://doi.org/10.1088/1742-6596/129/1/012004

    Article  CAS  Google Scholar 

  34. Raza MA, Westwood A, Brown A, Hondow N, Stirling C (2011) Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13):4269–4279. https://doi.org/10.1016/j.carbon.2011.06.002

    Article  CAS  Google Scholar 

  35. Albetran HM (2021) Investigation of the morphological, structural, and vibrational behaviour of graphite nanoplatelets. J Nanomater 2021:1–8. https://doi.org/10.1155/2021/5546509

    Article  CAS  Google Scholar 

  36. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  37. Yamanaka S, Nishino T, Fujimoto T, Kuga Y (2012) Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds. Carbon 50(14):5027–5033. https://doi.org/10.1016/j.carbon.2012.06.032

    Article  CAS  Google Scholar 

  38. Narayan R, Kim SO (2015) Surfactant mediated liquid phase exfoliation of graphene. Nano Converg 2(1):20. https://doi.org/10.1186/s40580-015-0050-x

    Article  CAS  Google Scholar 

  39. Shen J, Wu J, Wang M, Dong P, Xu J, Li X, Zhang X, Yuan J, Wang X, Ye M, Vajtai R, Lou J, Ajayan PM (2016) Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12(20):2741–2749. https://doi.org/10.1002/smll.201503834

    Article  CAS  Google Scholar 

  40. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213. https://doi.org/10.1021/la903188a

    Article  CAS  Google Scholar 

  41. Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28(40):14110–14113. https://doi.org/10.1021/la302750e

    Article  CAS  Google Scholar 

  42. Ravula S, Baker SN, Kamath G, Baker GA (2015) Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale 7(10):4338–4353. https://doi.org/10.1039/c4nr01524j

    Article  CAS  Google Scholar 

  43. Wan L, Wang B, Wang S, Wang X, Guo Z, Xiong H, Dong B, Zhao L, Lu H, Xu Z, Zhang X, Li T, Zhou W (2014) Water-soluble polyaniline/graphene prepared by in situ polymerization in graphene dispersions and use as counter-electrode materials for dye-sensitized solar cells. React Funct Polym 79:47–53. https://doi.org/10.1016/j.reactfunctpolym.2014.03.012

    Article  CAS  Google Scholar 

  44. Akca S, Foroughi A, Frochtzwajg D, Postma HW (2011) Competing interactions in DNA assembly on graphene. PLoS ONE 6(4):e18442. https://doi.org/10.1371/journal.pone.0018442

    Article  CAS  Google Scholar 

  45. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  46. Cai X, Jiang Z, Zhang X (2018) Effects of tip sonication parameters on liquid phase exfoliation of graphite into graphene nanoplatelets. Nanoscale Res Lett 13(1):241. https://doi.org/10.1186/s11671-018-2648-5

    Article  CAS  Google Scholar 

  47. Ghanem AF, Abdel Rehim MH (2018) Assisted tip sonication approach for graphene synthesis in aqueous dispersion. Biomedicines 6(2):63. https://doi.org/10.3390/biomedicines6020063

    Article  CAS  Google Scholar 

  48. Abbandanak SNH, Aghamohammadi H, Akbarzadeh E, Shabani N, Eslami-Farsani R, Kangooie M, Siadati MH (2019) Morphological/SAXS/WAXS studies on the electrochemical synthesis of graphene nanoplatelets. Ceram Int 45(16):20882–20890. https://doi.org/10.1016/j.ceramint.2019.07.077

    Article  CAS  Google Scholar 

  49. Tian S, He P, Chen L, Wang H, Ding G, Xie X (2017) Electrochemical fabrication of high quality graphene in mixed electrolyte for ultrafast electrothermal heater. Chem Mater 29(15):6214–6219. https://doi.org/10.1021/acs.chemmater.7b00567

    Article  CAS  Google Scholar 

  50. Yu P, Lowe SE, Simon GP, Zhong YL (2015) Electrochemical exfoliation of graphite and production of functional graphene. Curr Opin Colloid Interface Sci 20(5–6):329–338. https://doi.org/10.1016/j.cocis.2015.10.007

    Article  CAS  Google Scholar 

  51. Gee C-M, Tseng C-C, Wu F-Y, Chang H-P, Li L-J, Hsieh Y-P, Lin C-T, Chen J-C (2013) Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays 34(4):315–319. https://doi.org/10.1016/j.displa.2012.11.002

    Article  CAS  Google Scholar 

  52. Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J (2018) Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Funct Mater 28(19):1706705. https://doi.org/10.1002/adfm.201706705

    Article  CAS  Google Scholar 

  53. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Mullen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  54. Mao M, Wang M, Hu J, Lei G, Chen S, Liu H (2013) Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem Commun (Camb) 49(46):5301–5303. https://doi.org/10.1039/c3cc41909f

    Article  CAS  Google Scholar 

  55. Chen K, Xue D (2014) Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interface Sci 436:41–46. https://doi.org/10.1016/j.jcis.2014.08.057

    Article  CAS  Google Scholar 

  56. Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339. https://doi.org/10.1021/nn200025p

    Article  CAS  Google Scholar 

  57. Xiang HF, Shi JY, Feng XY, Ge XW, Wang HH, Chen CH (2011) Graphitic platelets prepared by electrochemical exfoliation of graphite and their application for Li energy storage. Electrochim Acta 56(15):5322–5327. https://doi.org/10.1016/j.electacta.2011.04.001

    Article  CAS  Google Scholar 

  58. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350. https://doi.org/10.1016/j.carbon.2013.09.009

    Article  CAS  Google Scholar 

  59. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  60. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561. https://doi.org/10.1002/adma.200800757

    Article  CAS  Google Scholar 

  61. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  62. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327. https://doi.org/10.1021/nl072838r

    Article  CAS  Google Scholar 

  63. Wu YH, Yu T, Shen ZX (2010) Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications. J Appl Phys 108(7):071301. https://doi.org/10.1063/1.3460809

    Article  CAS  Google Scholar 

  64. Dimiev AM, Ceriotti G, Behabtu N, Zakhidov D, Pasquali M, Saito R, Tour JM (2013) Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano 7(3):2773–2780. https://doi.org/10.1021/nn400207e

    Article  CAS  Google Scholar 

  65. Schafhaeutl C (1840) Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden. J Prakt Chem 21(1):129–157. https://doi.org/10.1002/prac.18400210117

    Article  Google Scholar 

  66. Lin S, Dong L, Zhang J, Lu H (2016) Room-temperature intercalation and ∼1000-fold chemical expansion for scalable preparation of high-quality graphene. Chem Mater 28(7):2138–2146. https://doi.org/10.1021/acs.chemmater.5b05043

    Article  CAS  Google Scholar 

  67. Dimiev AM, Ceriotti G, Metzger A, Kim ND, Tour JM (2016) Chemical mass production of graphene nanoplatelets in approximately 100% yield. ACS Nano 10(1):274–279. https://doi.org/10.1021/acsnano.5b06840

    Article  CAS  Google Scholar 

  68. DeSimone JM (2002) Practical approaches to green solvents. Science 297(5582):799–803. https://doi.org/10.1126/science.1069622

    Article  CAS  Google Scholar 

  69. Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63(23):1987–1989. https://doi.org/10.1016/j.matlet.2009.06.031

    Article  CAS  Google Scholar 

  70. Wu B, Yang X (2011) A molecular simulation of interactions between graphene nanosheets and supercritical CO2. J Colloid Interface Sci 361(1):1–8. https://doi.org/10.1016/j.jcis.2011.05.021

    Article  CAS  Google Scholar 

  71. Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346. https://doi.org/10.1016/j.matlet.2012.08.104

    Article  CAS  Google Scholar 

  72. Li L, Xu J, Li G, Jia X, Li Y, Yang F, Zhang L, Xu C, Gao J, Liu Y, Fang Z (2016) Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem Eng J 284:78–84. https://doi.org/10.1016/j.cej.2015.08.077

    Article  CAS  Google Scholar 

  73. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. Elsevier, New York, pp 121–139. https://doi.org/10.1016/b978-0-08-101975-7.00005-1

    Chapter  Google Scholar 

  74. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des 1980–2015(66):142–149. https://doi.org/10.1016/j.matdes.2014.10.047

    Article  CAS  Google Scholar 

  75. You X, Feng Q, Yang J, Huang K, Hu J, Dong S (2019) Preparation of high concentration graphene dispersion with low boiling point solvents. J Nanopart Res 21(19):1–11. https://doi.org/10.1007/s11051-019-4459-8

    Article  CAS  Google Scholar 

  76. Hashim UR, Jumahat A (2018) Improved tensile and fracture toughness properties of graphene nanoplatelets filled epoxy polymer via solvent compounding shear milling method. Mater Res Express 6(2):025303. https://doi.org/10.1088/2053-1591/aaeaf0

    Article  CAS  Google Scholar 

  77. Chen W, Weimin H, Li D, Chen S, Dai Z (2018) A critical review on the development and performance of polymer/graphene nanocomposites. Sci Eng Compos Mater 25(6):1059–1073. https://doi.org/10.1515/secm-2017-0199

    Article  CAS  Google Scholar 

  78. Long-Cheng T, Zhao L, Guan L-Z (2017) Graphene/polymer composite materials: processing, properties and applications. Advanced composite materials: properties and applications. De Gruyter Open, Poland, pp 349–419. https://doi.org/10.1515/9783110574432-007

    Chapter  Google Scholar 

  79. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: Production, properties and application in polymer composites. Mater Sci Eng: B 215:9–28. https://doi.org/10.1016/j.mseb.2016.10.004

    Article  CAS  Google Scholar 

  80. Das AK, Maiti S, Khatua BB (2015) High performance electrode material prepared through in-situ polymerization of aniline in the presence of zinc acetate and graphene nanoplatelets for supercapacitor application. J Electroanal Chem 739:10–19. https://doi.org/10.1016/j.jelechem.2014.12.018

    Article  CAS  Google Scholar 

  81. Tu C, Nagata K, Yan S (2016) Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene. Polym Bull 74(4):1237–1252. https://doi.org/10.1007/s00289-016-1774-4

    Article  CAS  Google Scholar 

  82. Chee WK, Lim HN, Huang NM, Harrison I (2015) Nanocomposites of graphene/polymers: a review. RSC Adv 5(83):68014–68051. https://doi.org/10.1039/c5ra07989f

    Article  CAS  Google Scholar 

  83. Li F, Long L, Weng Y (2020) A review on the contemporary development of composite materials comprising graphene/graphene derivatives. Adv Mater Sci Eng 2020:1–16. https://doi.org/10.1155/2020/7915641

    Article  Google Scholar 

  84. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327. https://doi.org/10.1021/ma702385h

    Article  CAS  Google Scholar 

  85. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051. https://doi.org/10.1016/j.compscitech.2006.11.014

    Article  CAS  Google Scholar 

  86. Wang B, Peng D, Lv R, Na B, Liu H, Yu Z (2019) Generic melt compounding strategy using reactive graphene towards high performance polyethylene/graphene nanocomposites. Compos Sci Technol 177:1–9. https://doi.org/10.1016/j.compscitech.2019.04.013

    Article  CAS  Google Scholar 

  87. Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72(6):737–743. https://doi.org/10.1016/j.compscitech.2012.01.027

    Article  CAS  Google Scholar 

  88. Shivakumar H, Renukappa NM, Shivakumar KN, Suresha B (2020) The reinforcing effect of graphene on the mechanical properties of carbon-epoxy composites. Open J Compos Mater 10(02):27–44. https://doi.org/10.4236/ojcm.2020.102003

    Article  CAS  Google Scholar 

  89. Wang F, Drzal LT (2018) Development of stiff, tough and conductive composites by the addition of graphene nanoplatelets to polyethersulfone/epoxy composites. Materials (Basel) 11(11):2137. https://doi.org/10.3390/ma11112137

    Article  CAS  Google Scholar 

  90. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310. https://doi.org/10.1039/c0jm02708a

    Article  CAS  Google Scholar 

  91. Mehdi Karevan RVP, Bhuiyan MdA, Kalaitzidou K (2010) Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett 11:325–331. https://doi.org/10.5714/CL.2010.11.4.325

    Article  Google Scholar 

  92. Cunha E, Ren H, Lin F, Kinloch IA, Sun Q, Fan Z, Young RJ (2018) The chemical functionalization of graphene nanoplatelets through solvent-free reaction. RSC Adv 8(58):33564–33573. https://doi.org/10.1039/c8ra04817g

    Article  CAS  Google Scholar 

  93. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  94. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063. https://doi.org/10.1021/cr1000173

    Article  CAS  Google Scholar 

  95. Hussein OA, Habib K, Saidur R, Muhsan AS, Shahabuddin S, Alawi OA (2019) The influence of covalent and non-covalent functionalization of GNP based nanofluids on its thermophysical, rheological and suspension stability properties. RSC Adv 9(66):38576–38589. https://doi.org/10.1039/c9ra07811h

    Article  CAS  Google Scholar 

  96. Georgakilas V (2014) Functionalization of graphene. Wiley, Germany

    Book  Google Scholar 

  97. Zaman I, Kuan H-C, Meng Q, Michelmore A, Kawashima N, Pitt T, Zhang L, Gouda S, Luong L, Ma J (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22(13):2735–2743. https://doi.org/10.1002/adfm.201103041

    Article  CAS  Google Scholar 

  98. Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH, Chen Y, Fox B (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4(1):4375. https://doi.org/10.1038/srep04375

    Article  CAS  Google Scholar 

  99. Meng Q, Jin J, Wang R, Kuan H-C, Ma J, Kawashima N, Michelmore A, Zhu S, Wang CH (2014) Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25(12):125707. https://doi.org/10.1088/0957-4484/25/12/125707

    Article  CAS  Google Scholar 

  100. Tang G, Jiang Z-G, Li X, Zhang H-B, Hong S, Yu Z-Z (2014) Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos B Eng 67:564–570. https://doi.org/10.1016/j.compositesb.2014.08.013

    Article  CAS  Google Scholar 

  101. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  102. Cosio-Castañeda C, Martínez-García R, Socolovsky LM (2014) Synthesis of silanized maghemite nanoparticles onto reduced graphene sheets composites. Solid State Sci 30:17–20. https://doi.org/10.1016/j.solidstatesciences.2014.02.004

    Article  CAS  Google Scholar 

  103. Kim D, Dhand V, Rhee K, Park S-J (2015) Study on the effect of silanization and improvement in the tensile behavior of graphene-chitosan-composite. Polymers 7(3):527–551. https://doi.org/10.3390/polym7030527

    Article  CAS  Google Scholar 

  104. Ghanem AF, Yassin MA, Rabie AM, Gouanvé F, Espuche E, Abdel Rehim MH (2020) Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene. J Mater Sci 56(1):497–512. https://doi.org/10.1007/s10853-020-05329-4

    Article  CAS  Google Scholar 

  105. Sun J-T, Hong C-Y, Pan C-Y (2011) Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym Chem 2(5):998–1007. https://doi.org/10.1039/c0py00356e

    Article  CAS  Google Scholar 

  106. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22(14):7010. https://doi.org/10.1039/c2jm16901k

    Article  CAS  Google Scholar 

  107. Kim J, Cha J, Jun GH, Yoo SC, Ryu S, Hong SH (2018) Fabrication of graphene nanoplatelet/epoxy nanocomposites for lightweight and high-strength structural applications. Part Part Syst Charact 35(6):1700412. https://doi.org/10.1002/ppsc.201700412

    Article  CAS  Google Scholar 

  108. Gatti T, Vicentini N, Mba M, Menna E (2016) Organic functionalized carbon nanostructures for functional polymer-based nanocomposites. Eur J Org Chem 6:1071–1090. https://doi.org/10.1002/ejoc.201501411

    Article  CAS  Google Scholar 

  109. Mann JA, Dichtel WR (2013) Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J Phys Chem Lett 4(16):2649–2657. https://doi.org/10.1021/jz4010448

    Article  CAS  Google Scholar 

  110. Qu S, Li M, Xie L, Huang X, Yang J, Wang N, Yang S (2013) Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 7(5):4070–4081. https://doi.org/10.1021/nn4001963

    Article  CAS  Google Scholar 

  111. Parviz D, Das S, Ahmed HST, Irin F, Bhattacharia S, Green MJ (2012) Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6(10):8857–8867. https://doi.org/10.1021/nn302784m

    Article  CAS  Google Scholar 

  112. Cho J, Jeon I, Kim SY, Lim S, Jho JY (2017) Improving dispersion and barrier properties of polyketone/graphene nanoplatelet composites via noncovalent functionalization using aminopyrene. ACS Appl Mater Interfaces 9(33):27984–27994. https://doi.org/10.1021/acsami.7b10474

    Article  CAS  Google Scholar 

  113. He T, Qi X, Chen R, Wei J, Zhang H, Sun H (2012) Enhanced optical nonlinearity in noncovalently functionalized amphiphilic graphene composites. Chem Plus Chem 77(8):688–693. https://doi.org/10.1002/cplu.201200113

    Article  CAS  Google Scholar 

  114. Shen J, Hu Y, Li C, Qin C, Ye M (2009) Synthesis of amphiphilic graphene nanoplatelets. Small 5(1):82–85. https://doi.org/10.1002/smll.200800988

    Article  CAS  Google Scholar 

  115. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21(31):3159–3164. https://doi.org/10.1002/adma.200803633

    Article  CAS  Google Scholar 

  116. Khan MS, Misra SK, Wang Z, Daza E, Schwartz-Duval AS, Kus JM, Pan D, Pan D (2017) Paper-based analytical biosensor chip designed from graphene-nanoplatelet-amphiphilic-diblock-co-polymer composite for cortisol detection in human saliva. Anal Chem 89(3):2107–2115. https://doi.org/10.1021/acs.analchem.6b04769

    Article  CAS  Google Scholar 

  117. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Hollertz R, Nüesch FA, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10. https://doi.org/10.1016/j.cplett.2012.02.006

    Article  CAS  Google Scholar 

  118. Chiu Y-C, Huang C-L, Wang C (2016) Rheological and conductivity percolations of syndiotactic polystyrene composites filled with graphene nanosheets and carbon nanotubes: a comparative study. Compos Sci Technol 134:153–160. https://doi.org/10.1016/j.compscitech.2016.08.016

    Article  CAS  Google Scholar 

  119. Jiang T, Kuila T, Kim NH, Ku B-C, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125. https://doi.org/10.1016/j.compscitech.2013.02.018

    Article  CAS  Google Scholar 

  120. Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos A Appl Sci Manuf 64:79–89. https://doi.org/10.1016/j.compositesa.2014.04.023

    Article  CAS  Google Scholar 

  121. King JA, Klimek DR, Miskioglu I, Odegard GM (2014) Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater 49(6):659–668. https://doi.org/10.1177/0021998314522674

    Article  CAS  Google Scholar 

  122. Shen M-Y, Chang T-Y, Hsieh T-H, Li Y-L, Chiang C-L, Yang H, Yip M-C (2013) Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater 2013:1–9. https://doi.org/10.1155/2013/565401

    Article  CAS  Google Scholar 

  123. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78:268–278. https://doi.org/10.1016/j.carbon.2014.07.003

    Article  CAS  Google Scholar 

  124. De Vivo B, Lamberti P, Spinelli G, Tucci V, Vertuccio L, Vittoria V (2014) Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications. J Appl Phys 116(5):054307. https://doi.org/10.1063/1.4892098

    Article  CAS  Google Scholar 

  125. Ha HW, Choudhury A, Kamal T, Kim DH, Park SY (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4(9):4623–4630. https://doi.org/10.1021/am300999g

    Article  CAS  Google Scholar 

  126. Fayed AS, Abu-Hasel KA, Mahdy SM, Ali AA (2021) Morphological, mechanical, and thermal characterization of electrospun three-dimensional graphite nanoplatelets/polystyrene ultra-fine fibril composite fabrics. Polym Compos 42:1462–1472. https://doi.org/10.1002/pc.25916

    Article  CAS  Google Scholar 

  127. Wei Y, Liu Y, Muhammad Y, Subhan S, Meng F, Ren D, Han M, Li J (2020) Study on the properties of GNPs/PS and GNPs/ODA composites incorporated SBS modified asphalt after short-term and long-term aging. Constr Build Mater 261(1):119682. https://doi.org/10.1016/j.conbuildmat.2020.119682

    Article  CAS  Google Scholar 

  128. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525. https://doi.org/10.1002/adfm.200700797

    Article  CAS  Google Scholar 

  129. Arda E, Mergen ÖB, Evingür GA (2018) Electrical, optical and mechanical properties of PS/GNP composite films. Phase Transit 91(8):887–900. https://doi.org/10.1080/01411594.2018.1506879

    Article  CAS  Google Scholar 

  130. Watt E, Abdelwahab MA, Snowdon MR, Mohanty AK, Khalil H, Misra M (2020) Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets. Sci Rep 10(1):10714. https://doi.org/10.1038/s41598-020-66855-4

    Article  CAS  Google Scholar 

  131. Inuwa IM, Hassan A, Wang D-Y, Samsudin SA, Mohamad Haafiz MK, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stab 110:137–148. https://doi.org/10.1016/j.polymdegradstab.2014.08.025

    Article  CAS  Google Scholar 

  132. Pang AL, Husin MR, Arsad A, Ahmadipour M (2021) Effect of graphene nanoplatelets on structural, morphological, thermal, and electrical properties of recycled polypropylene/polyaniline nanocomposites. J Mater Sci: Mater Electron 32:9574–9583. https://doi.org/10.1007/s10854-021-05620-3

    Article  CAS  Google Scholar 

  133. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367. https://doi.org/10.1016/j.apsusc.2012.12.028

    Article  CAS  Google Scholar 

  134. Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21. https://doi.org/10.1016/j.reactfunctpolym.2013.10.004

    Article  CAS  Google Scholar 

  135. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927. https://doi.org/10.1021/jp901284d

    Article  CAS  Google Scholar 

  136. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose- reinforced shape memory polyurethanes. Polym Int 57(4):651–659. https://doi.org/10.1002/pi.2394

    Article  CAS  Google Scholar 

  137. Lee SH, Oh CR, Lee DS (2019) Large improvement in the mechanical properties of polyurethane nanocomposites based on a highly concentrated graphite nanoplate/polyol masterbatch. Nanomaterials (Basel) 9(3):389. https://doi.org/10.3390/nano9030389

    Article  CAS  Google Scholar 

  138. Kausar A, Ullah W, Muhammad B, Siddiq M (2014) Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Adv Mater Sci 14(4):61–74. https://doi.org/10.2478/adms-2014-0022

    Article  Google Scholar 

  139. Madhad HV, Vasava DV (2019) Review on recent progress in synthesis of graphene–polyamide nanocomposites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719880942

    Article  Google Scholar 

  140. Jacobs CJ, Tate JS, Olson B, Theodoropoulou N, Koo JH (2012) Thermal characterization of polyamide 11/nanographene platelet nanocomposites. J Nanosci Nanotechnol 12(3):1799–1805. https://doi.org/10.1166/jnn.2012.5158

    Article  CAS  Google Scholar 

  141. Bijarimi M, Amirul M, Norazmi M, Ramli A, Desa MSZ, Desa MDA, Abu Samah MA (2019) Preparation and characterization of poly (lactic acid) (PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites. Mater Res Express 6(5):055044. https://doi.org/10.1088/2053-1591/ab05a3

    Article  CAS  Google Scholar 

  142. Liu W, Do I, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11:279–284. https://doi.org/10.5714/CL.2010.11.4.279

    Article  Google Scholar 

  143. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746. https://doi.org/10.1016/j.carbon.2009.02.030

    Article  CAS  Google Scholar 

  144. Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220. https://doi.org/10.1021/nn1019626

    Article  CAS  Google Scholar 

  145. Sain PK, Goyal RK, Prasad YVSS, Jyoti SKB, Bhargava AK (2015) Few-layer-graphene/polycarbonate nanocomposites as dielectric and conducting material. J Appl Polym Sci 132(34):42443. https://doi.org/10.1002/app.42443

    Article  CAS  Google Scholar 

  146. Nimbalkar P, Korde A, Goyal RK (2018) Electromagnetic interference shielding of polycarbonate/GNP nanocomposites in X-band. Mater Chem Phys 206:251–258. https://doi.org/10.1016/j.matchemphys.2017.12.027

    Article  CAS  Google Scholar 

  147. Heidar Pour R, Soheilmoghaddam M, Hassan A, Bourbigot S (2015) Flammability and thermal properties of polycarbonate /acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polym Degrad Stab 120:88–97. https://doi.org/10.1016/j.polymdegradstab.2015.06.013

    Article  CAS  Google Scholar 

  148. Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12(7):5233–5239. https://doi.org/10.1166/jnn.2012.6351

    Article  CAS  Google Scholar 

  149. Wang F, Drzal LT, Qin Y, Huang Z (2015) Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Compos B Eng 79:521–529. https://doi.org/10.1016/j.compositesb.2015.04.031

    Article  CAS  Google Scholar 

  150. Yuan H, Meng L-Y, Park S-J (2016) A review: synthesis and applications of graphene/chitosan nanocomposites. Carbon Lett 17(1):11–17. https://doi.org/10.5714/cl.2016.17.1.011

    Article  Google Scholar 

  151. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM (2019) Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 16(1):79–99. https://doi.org/10.1080/17425247.2019.1556257

    Article  CAS  Google Scholar 

  152. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305. https://doi.org/10.1016/j.carbpol.2009.08.007

    Article  CAS  Google Scholar 

  153. Mergen ÖB, Arda E, Evingür GA (2019) Electrical, optical and mechanical properties of chitosan biocomposites. J Compos Mater 54(11):1497–1510. https://doi.org/10.1177/0021998319883916

    Article  CAS  Google Scholar 

  154. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arabian J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  155. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  CAS  Google Scholar 

  156. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450. https://doi.org/10.1021/cm100477v

    Article  CAS  Google Scholar 

  157. Chu K, Li W-s, Dong H (2012) Role of graphene waviness on the thermal conductivity of graphene composites. Appl Phys A 111(1):221–225. https://doi.org/10.1007/s00339-012-7497-y

    Article  CAS  Google Scholar 

  158. Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49:1347–1353. https://doi.org/10.1016/j.eurpolymj.2013.02.033

    Article  CAS  Google Scholar 

  159. Wang B, Lee BK, Kwak MJ, Lee DW (2013) Graphene/polydimethylsiloxane nanocomposite strain sensor. Rev Sci Instrum 84(10):105005. https://doi.org/10.1063/1.4826496

    Article  CAS  Google Scholar 

  160. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205. https://doi.org/10.1021/ma060733p

    Article  CAS  Google Scholar 

  161. Celzard A, Marêché JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:3094–3101. https://doi.org/10.1088/0022-3727/33/23/313

    Article  CAS  Google Scholar 

  162. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074

    Article  CAS  Google Scholar 

  163. Abraham J, Arif PM, Xavier P, Bose S, George SC, Kalarikkal N, Thomas S (2017) Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer 112:102–115. https://doi.org/10.1016/j.polymer.2017.01.078

    Article  CAS  Google Scholar 

  164. Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8(1):5567. https://doi.org/10.1038/s41598-018-23859-5

    Article  CAS  Google Scholar 

  165. Alexopoulos ND, Paragkamian Z, Poulin P, Kourkoulis SK (2017) Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Compos Sci Technol 150:194–204. https://doi.org/10.1016/j.compscitech.2017.07.030

    Article  CAS  Google Scholar 

  166. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890. https://doi.org/10.1021/nn9010472

    Article  CAS  Google Scholar 

  167. Liang J-Z, Du Q, Tsui GC-P, Tang C-Y (2016) Tensile properties of graphene nano-platelets reinforced polypropylene composites. Compos B Eng 95:166–171. https://doi.org/10.1016/j.compositesb.2016.04.011

    Article  CAS  Google Scholar 

  168. Mohseni Taromsari S, Salari M, Bagheri R, Faghihi Sani MA (2019) Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications. Compos B Eng 175:107181. https://doi.org/10.1016/j.compositesb.2019.107181

    Article  CAS  Google Scholar 

  169. Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22(24):2694–2697. https://doi.org/10.1002/adma.200904264

    Article  CAS  Google Scholar 

  170. Young RJ, Lovell PA (2011) Introduction to polymers, Third. CRC Press Taylor & Francis Group, London

    Book  Google Scholar 

  171. Halpin JC, Thomas RL (1968) Ribbon reinforcement of composites. J Compos Mater 2(4):488–497. https://doi.org/10.1177/002199836800200409

    Article  Google Scholar 

  172. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352. https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  173. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333. https://doi.org/10.1002/pc.750050413

    Article  Google Scholar 

  174. Wei J, Atif R, Vo T, Inam F (2015) Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites. J Nanomater 2015:1–12. https://doi.org/10.1155/2015/561742

    Article  CAS  Google Scholar 

  175. Domun N, Hadavinia H, Zhang T, Liaghat G, Vahid S, Spacie C, Paton KR, Sainsbury T (2017) Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites 3(3):85–96. https://doi.org/10.1080/20550324.2017.1365414

    Article  CAS  Google Scholar 

  176. Wang F, Drzal LT, Qin Y, Huang Z (2014) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093. https://doi.org/10.1007/s10853-014-8665-6

    Article  CAS  Google Scholar 

  177. King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223. https://doi.org/10.1002/app.38645

    Article  CAS  Google Scholar 

  178. Cha J, Kim J, Ryu S, Hong SH (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos B Eng 162:283–288. https://doi.org/10.1016/j.compositesb.2018.11.011

    Article  CAS  Google Scholar 

  179. Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55(19):4990–5000. https://doi.org/10.1016/j.polymer.2014.07.045

    Article  CAS  Google Scholar 

  180. Zaman I, Phan TT, Kuan H-C, Meng Q, La Bao LT, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611. https://doi.org/10.1016/j.polymer.2011.02.003

    Article  CAS  Google Scholar 

  181. Zakaria MR, Abdul Kudus MH, Akil HM, Thirmizir MZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos B Eng 119:57–66. https://doi.org/10.1016/j.compositesb.2017.03.023

    Article  CAS  Google Scholar 

  182. Wu Y, Chen M, Chen M, Ran Z, Zhu C, Liao H (2017) The reinforcing effect of polydopamine functionalized graphene nanoplatelets on the mechanical properties of epoxy resins at cryogenic temperature. Polym Test 58:262–269. https://doi.org/10.1016/j.polymertesting.2016.12.021

    Article  CAS  Google Scholar 

  183. Kilic U, Sherif MM, Ozbulut OE (2019) Tensile properties of graphene nanoplatelets/epoxy composites fabricated by various dispersion techniques. Polym Test 76:181–191. https://doi.org/10.1016/j.polymertesting.2019.03.028

    Article  CAS  Google Scholar 

  184. Shokrieh MM, Ghoreishi SM, Esmkhani M, Zhao Z (2014) Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue Fract Eng Mater Struct 37(10):1116–1123. https://doi.org/10.1111/ffe.12191

    Article  CAS  Google Scholar 

  185. Moosa AA, Moosa AA, Sa AR, Ibrahim MN (2016) Mechanical and electrical properties of graphene nanoplates and carbonnanotubes hybrid epoxy nanocomposites. Am J Mater Sci 6:157–165. https://doi.org/10.5923/j.materials.20160606.03

    Article  Google Scholar 

  186. Le MT, Huang SC (2015) Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials (Basel) 8(8):5526–5536. https://doi.org/10.3390/ma8085262

    Article  CAS  Google Scholar 

  187. Rafiee M, Hosseini Rad S, Nitzsche F, Laliberte J, Labrosse MR (2020) Significant fatigue life enhancement in multiscale doubly-modified fiber/epoxy nanocomposites with graphene nanoplatelets and reduced-graphene oxide. Polymers (Basel) 12(9):2135. https://doi.org/10.3390/polym12092135

    Article  CAS  Google Scholar 

  188. Bourchak M, Nahas MN, Kada B, Khan AN, Al-Garni A, Juhany KA (2019) Tensile properties of graphene-based nanocomposites: a comparative study of ultrasonication and microcompounding processing methods. Mech Compos Mater 55(5):617–626. https://doi.org/10.1007/s11029-019-09838-5

    Article  CAS  Google Scholar 

  189. Her SC, Chen LY (2019) Fabrication and characterization of graphene/epoxy nanocomposites. Mater Sci 25(4):433–440. https://doi.org/10.5755/j01.ms.25.4.19462

    Article  Google Scholar 

  190. Li W, Dichiara A, Bai J (2013) Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227. https://doi.org/10.1016/j.compscitech.2012.11.015

    Article  CAS  Google Scholar 

  191. Kausar A, Ur Rahman A (2016) Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite. Fuller, Nanotubes, Carbon Nanostruct 24(4):235–242. https://doi.org/10.1080/1536383x.2016.1144592

    Article  CAS  Google Scholar 

  192. Oyarzabal A, Cristiano-Tassi A, Laredo E, Newman D, Bello A, Etxeberría A, Eguiazabal JI, Zubitur M, Mugica A, Müller AJ (2017) Dielectric, mechanical and transport properties of bisphenol A polycarbonate/graphene nanocomposites prepared by melt blending. J Appl Polym Sci 134(13):44654. https://doi.org/10.1002/app.44654

    Article  CAS  Google Scholar 

  193. Gao Y, Picot OT, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86:117–131. https://doi.org/10.1016/j.eurpolymj.2016.10.045

    Article  CAS  Google Scholar 

  194. Rashmi BJ, Prashantha K, Lacrampe MF, Krawczak P (2018) Scalable production of multifunctional bio-based polyamide 11/graphene nanocomposites by melt extrusion processes via masterbatch approach. Adv Polym Technol 37(4):1067–1075. https://doi.org/10.1002/adv.21757

    Article  CAS  Google Scholar 

  195. Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386. https://doi.org/10.1016/j.carbon.2012.07.021

    Article  CAS  Google Scholar 

  196. Park JK, Lee JY, Drzal LT, Cho D (2016) Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers. Carbon lett 17(1):33–38. https://doi.org/10.5714/cl.2016.17.1.033

    Article  Google Scholar 

  197. Wang P-N, Hsieh T-H, Chiang C-L, Shen M-Y (2015) Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. J Nanomater 2015:1–9. https://doi.org/10.1155/2015/838032

    Article  CAS  Google Scholar 

  198. Wang F, Cai X (2018) Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J Mater Sci 54(5):3847–3862. https://doi.org/10.1007/s10853-018-3097-3

    Article  CAS  Google Scholar 

  199. Ho QB, Osazuwa O, Modler R, Daymond M, Gallerneault MT, Kontopoulou M (2019) Exfoliation of graphite and expanded graphite by melt compounding to prepare reinforced, thermally and electrically conducting polyamide composites. Compos Sci Technol 176:111–120. https://doi.org/10.1016/j.compscitech.2019.03.024

    Article  CAS  Google Scholar 

  200. Dai J, Peng C, Wang F, Zhang G, Huang Z (2016) Effects of functionalized graphene nanoplatelets on the morphology and properties of phenolic resins. J Nanomater 2016:1–7. https://doi.org/10.1155/2016/3485167

    Article  CAS  Google Scholar 

  201. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, Yu L (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4:1543–1552. https://doi.org/10.1021/am201757v

    Article  CAS  Google Scholar 

  202. Kim J, Cha J, Chung B, Ryu S, Hong SH (2020) Fabrication and mechanical properties of carbon fiber/epoxy nanocomposites containing high loadings of noncovalently functionalized graphene nanoplatelets. Compos Sci Technol 192:108101. https://doi.org/10.1016/j.compscitech.2020.108101

    Article  CAS  Google Scholar 

  203. Rafiee M, Nitzsche F, Laliberte J, Thibault J, Labrosse MR (2018) Simultaneous reinforcement of matrix and fibers for enhancement of mechanical properties of graphene-modified laminated composites. Polym Compos 40(S2):E1732–E1745. https://doi.org/10.1002/pc.25137

    Article  CAS  Google Scholar 

  204. Cha J, Kim J, Ryu S, Hong SH (2019) Strengthening effect of melamine functionalized low-dimension carbon at fiber reinforced polymer composites and their interlaminar shear behavior. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.106976

    Article  Google Scholar 

  205. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341. https://doi.org/10.1016/j.compositesb.2014.10.014

    Article  CAS  Google Scholar 

  206. Ali Charfi M, Mathieu R, Chatelain J-F, Ouellet-Plamondon C, Lebrun G (2020) Effect of graphene additive on flexural and interlaminar shear strength properties of carbon fiber-reinforced polymer composite. J Compos Sci 4(4):162. https://doi.org/10.3390/jcs4040162

    Article  CAS  Google Scholar 

  207. Li Y, Zhang H, Huang Z, Bilotti E, Peijs T (2017) Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties. J Nanomater 2017:1–10. https://doi.org/10.1155/2017/5194872

    Article  CAS  Google Scholar 

  208. Fenner JS, Daniel IM (2014) Hybrid nanoreinforced carbon/epoxy composites for enhanced damage tolerance and fatigue life. Compos A Appl Sci Manuf 65:47–56. https://doi.org/10.1016/j.compositesa.2014.05.023

    Article  CAS  Google Scholar 

  209. Shrivastava R, Singh KK (2019) Interlaminar fracture toughness characterization of laminated composites: a review. Polym Rev 60:542–593. https://doi.org/10.1080/15583724.2019.1677708

    Article  CAS  Google Scholar 

  210. Bhasin M, Wu S, Ladani RB, Kinloch AJ, Wang CH, Mouritz AP (2018) Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets. In J Fatigue 113:88–97. https://doi.org/10.1016/j.ijfatigue.2018.04.001

    Article  CAS  Google Scholar 

  211. Herrera-Ramírez LC, Castell P, Fernández-Blázquez JP, Fernández Á, Guzmán de Villoria R (2015) How do graphite nanoplates affect the fracture toughness of polypropylene composites? Compos Sci Technol 111:9–16. https://doi.org/10.1016/j.compscitech.2015.02.017

    Article  CAS  Google Scholar 

  212. Duguay AJ, Nader JW, Kiziltas A, Gardner DJ, Dagher HJ (2013) Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties. Appl Nanosci 4(3):279–291. https://doi.org/10.1007/s13204-013-0204-2

    Article  CAS  Google Scholar 

  213. Chatterjee S, Nuesch FA, Chu BT (2011) Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology 22(27):275714. https://doi.org/10.1088/0957-4484/22/27/275714

    Article  CAS  Google Scholar 

  214. Ahmadi-Moghadam B, Taheri F (2014) Fracture and toughening mechanisms of GNP-based nanocomposites in modes I and II fracture. Eng Fract Mech 131:329–339. https://doi.org/10.1016/j.engfracmech.2014.08.008

    Article  Google Scholar 

  215. Wang F, Drzal LT, Qin Y, Huang Z (2016) Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos A Appl Sci Manuf 87:10–22. https://doi.org/10.1016/j.compositesa.2016.04.009

    Article  CAS  Google Scholar 

  216. Jia Z, Feng X, Zou Y (2018) An investigation on mode II fracture toughness enhancement of epoxy adhesive using graphene nanoplatelets. Compos B Eng 155:452–456. https://doi.org/10.1016/j.compositesb.2018.09.094

    Article  CAS  Google Scholar 

  217. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99. https://doi.org/10.1016/j.compscitech.2014.03.014

    Article  CAS  Google Scholar 

  218. Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618. https://doi.org/10.1016/j.carbon.2015.07.026

    Article  CAS  Google Scholar 

  219. Du X, Zhou H, Sun W, Liu H-Y, Zhou G, Zhou H, Mai Y-W (2017) Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos Sci Technol 140:123–133. https://doi.org/10.1016/j.compscitech.2016.12.028

    Article  CAS  Google Scholar 

  220. Kumar A, Roy S (2018) Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite. Compos B Eng 134:98–105. https://doi.org/10.1016/j.compositesb.2017.09.052

    Article  CAS  Google Scholar 

  221. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888. https://doi.org/10.1016/j.eurpolymj.2013.10.008

    Article  CAS  Google Scholar 

  222. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285. https://doi.org/10.1016/S0008-6223(00)00184-6

    Article  CAS  Google Scholar 

  223. Verma M, Verma P, Dhawan SK, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5(118):97349–97358. https://doi.org/10.1039/c5ra17276d

    Article  CAS  Google Scholar 

  224. Zheng C, Fan Z, Wei T, Luo G (2009) Temperature dependence of the conductivity behavior of graphite nanoplatelet-filled epoxy resin composites. J Appl Polym Sci 113(3):1515–1519. https://doi.org/10.1002/app.30009

    Article  CAS  Google Scholar 

  225. Lu X, Zhang W, Wang C, Wen T-C, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Mater Sci 36(5):671–712. https://doi.org/10.1016/j.progpolymsci.2010.07.010

    Article  CAS  Google Scholar 

  226. Venkata Ramana G, Padya B, Srikanth VVSS, Jain PK, Padmanabham G, Sundararajan G (2011) Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 49(15):5239–5245. https://doi.org/10.1016/j.carbon.2011.07.041

    Article  CAS  Google Scholar 

  227. Xiang D, Wang L, Tang Y, Zhao C, Harkin-Jones E, Li Y (2018) Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym Int 67(2):227–235. https://doi.org/10.1002/pi.5502

    Article  CAS  Google Scholar 

  228. Marsden AJ, Papageorgiou DG, Vallés C, Liscio A, Palermo V, Bissett MA, Young RJ, Kinloch IA (2018) Electrical percolation in graphene–polymer composites. 2D Mater 5(3):032003. https://doi.org/10.1088/2053-1583/aac055

    Article  CAS  Google Scholar 

  229. Omar G, Salim MA, Mizah BR, Kamarolzaman AA, Nadlene R (2019) Electronic applications of functionalized graphene nanocomposites. Functionalized graphene nanocomposites and their derivatives. Elseiver, Amsterdam, pp 245–263. https://doi.org/10.1016/b978-0-12-814548-7.00012-x

    Chapter  Google Scholar 

  230. Cataldi P, Heredia-Guerrero JA, Guzman-Puyol S, Ceseracciu L, La Notte L, Reale A, Ren J, Zhang Y, Liu L, Miscuglio M, Savi P, Piazza S, Duocastella M, Perotto G, Athanassiou A, Bayer IS (2018) Sustainable electronics based on crop plant extracts and graphene: a “bioadvantaged” approach. Adv Sustain Syst. https://doi.org/10.1002/adsu.201800069

    Article  Google Scholar 

  231. Oskouyi AB, Mertiny P (2011) Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng 10:403–408. https://doi.org/10.1016/j.proeng.2011.04.068

    Article  Google Scholar 

  232. Li J, Kim J-K (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos Sci Technol 67(10):2114–2120. https://doi.org/10.1016/j.compscitech.2006.11.010

    Article  CAS  Google Scholar 

  233. Folorunso O, Hamam Y, Sadiku R, Ray SS, Kumar N (2021) Investigation and modeling of the electrical conductivity of graphene nanoplatelets-loaded doped-polypyrrole. Polymers (Basel) 13(7):1034. https://doi.org/10.3390/polym13071034

    Article  CAS  Google Scholar 

  234. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574–588. https://doi.org/10.1103/RevModPhys.45.574

    Article  Google Scholar 

  235. Wernik JM, Meguid SA (2011) Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl Mech Rev 63(5):050801. https://doi.org/10.1115/1.4003503

    Article  Google Scholar 

  236. Tiusanen J, Vlasveld D, Vuorinen J (2012) Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Compos Sci Technol 72(14):1741–1752. https://doi.org/10.1016/j.compscitech.2012.07.009

    Article  CAS  Google Scholar 

  237. Weber M, Kamal MR (1997) Estimation of the volume resistivity of electrically conductive composites. Polym Compos 18(6):711–725. https://doi.org/10.1002/pc.10324

    Article  CAS  Google Scholar 

  238. McCullough RL (1985) Generalized combining rules for predicting transport properties of composite materials. Compos Sci Technol 22(1):3–21. https://doi.org/10.1016/0266-3538(85)90087-9

    Article  CAS  Google Scholar 

  239. Fournier J, Boiteux G, Seytrea G, Marichy G (1997) Percolation network of polypyrrole in conducting polymer composites. Synth Met 84(1–3):839–840. https://doi.org/10.1016/S0379-6779(96)04173-2

    Article  CAS  Google Scholar 

  240. Simmons JG (1963) Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 34(6):1793–1803. https://doi.org/10.1063/1.1702682

    Article  Google Scholar 

  241. Yu Y, Song G, Sun L (2010) Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes. J Appl Phys 108(8):084319. https://doi.org/10.1063/1.3499628

    Article  CAS  Google Scholar 

  242. Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jiang N (2015) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36(3):556–565. https://doi.org/10.1002/pc.22972

    Article  CAS  Google Scholar 

  243. Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663. https://doi.org/10.1016/j.msea.2006.08.145

    Article  CAS  Google Scholar 

  244. Imran KA, Shivakumar KN (2017) Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties. J Reinf Plast Compos 37(2):118–133. https://doi.org/10.1177/0731684417736143

    Article  CAS  Google Scholar 

  245. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196. https://doi.org/10.1016/j.polymer.2010.01.027

    Article  CAS  Google Scholar 

  246. Fan Z, Zheng C, Wei T, Zhang Y, Luo G (2009) Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polym Eng Sci 49(10):2041–2045. https://doi.org/10.1002/pen.21445

    Article  CAS  Google Scholar 

  247. Jiang Y, Sun R, Zhang H-B, Min P, Yang D, Yu Z-Z (2017) Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites. Compos A Appl Sci Manuf 94:104–112. https://doi.org/10.1016/j.compositesa.2016.12.009

    Article  CAS  Google Scholar 

  248. Wajid AS, Ahmed HST, Das S, Irin F, Jankowski AF, Green MJ (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298(3):339–347. https://doi.org/10.1002/mame.201200043

    Article  CAS  Google Scholar 

  249. Zhou T, Chen D, Jiu J, Nge TT, Sugahara T, Nagao S, Koga H, Nogi M, Suganuma K, Wang X, Liu X, Cheng P, Wang T, Xiong D (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7(9):756–766. https://doi.org/10.3144/expresspolymlett.2013.73

    Article  CAS  Google Scholar 

  250. Shulga YM, Melezhik AV, Kabachkov EN, Milovich FO, Lyskov NV, Irzhak AV, Dremova NN, Gutsev GL, Michtchenko A, Tkachev AG, Kumar Y (2019) Characterisation and electrical conductivity of polytetrafluoroethylene/graphite nanoplatelets composite films. Appl Phys A 125(7):460. https://doi.org/10.1007/s00339-019-2747-x

    Article  CAS  Google Scholar 

  251. Qi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, Koratkar N (2011) Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl Mater Interfaces 3(8):3130–3133. https://doi.org/10.1021/am200628c

    Article  CAS  Google Scholar 

  252. Yan D, Zhang HB, Jia Y, Hu J, Qi XY, Zhang Z, Yu ZZ (2012) Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl Mater Interfaces 4(9):4740–4745. https://doi.org/10.1021/am301119b

    Article  CAS  Google Scholar 

  253. Jun Y-S, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos B Eng 133:218–225. https://doi.org/10.1016/j.compositesb.2017.09.028

    Article  CAS  Google Scholar 

  254. Yu J, Cha JE, Kim SY (2017) Thermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication. Compos B Eng 110:171–177. https://doi.org/10.1016/j.compositesb.2016.11.014

    Article  CAS  Google Scholar 

  255. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205. https://doi.org/10.1016/j.carbon.2010.09.004

    Article  CAS  Google Scholar 

  256. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  257. Huang P, Li Y, Yang G, Li Z-X, Li Y-Q, Hu N, Fu S-Y, Novoselov KS (2020) Graphene film for thermal management: a review. Nano Mater Sci 3(1):1–16. https://doi.org/10.1016/j.nanoms.2020.09.001

    Article  CAS  Google Scholar 

  258. Moriche R, Prolongo SG, Sánchez M, Jiménez-Suárez A, Chamizo FJ, Ureña A (2016) Thermal conductivity and lap shear strength of GNP/epoxy nanocomposites adhesives. Int J Adhes Adhes 68:407–410. https://doi.org/10.1016/j.ijadhadh.2015.12.012

    Article  CAS  Google Scholar 

  259. Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116. https://doi.org/10.1016/j.carbon.2011.06.095

    Article  CAS  Google Scholar 

  260. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet−epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569. https://doi.org/10.1021/jp071761s

    Article  CAS  Google Scholar 

  261. Ajorloo M, Fasihi M, Ohshima M, Taki K (2019) How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller? Mater Des. https://doi.org/10.1016/j.matdes.2019.108068

    Article  Google Scholar 

  262. Dunn ML, Taya M, Hatta H, Takei T, Nakajima Y (1993) Thermal conductivity of hybrid short fiber composites. J Compos Mater 27(15):1493–1519. https://doi.org/10.1177/002199839302701505

    Article  CAS  Google Scholar 

  263. Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS (2011) Microwave-exfoliated graphite oxide/polycarbonate composites. Macromolecules 44(16):6488–6495. https://doi.org/10.1021/ma2007317

    Article  CAS  Google Scholar 

  264. Alateyah AI (2018) Thermal properties and morphology of polypropylene based on exfoliated graphite nanoplatelets/nanomagnesium oxide. Open Eng 8(1):432–439. https://doi.org/10.1515/eng-2018-0052

    Article  CAS  Google Scholar 

  265. Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci B Polym Phys 48(8):850–858. https://doi.org/10.1002/polb.21956

    Article  CAS  Google Scholar 

  266. Bao Q, Zhang H, Yang J-x, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20(5):782–791. https://doi.org/10.1002/adfm.200901658

    Article  CAS  Google Scholar 

  267. Ansari S, Giannelis EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897. https://doi.org/10.1002/polb.21695

    Article  CAS  Google Scholar 

  268. Gu J, Du J, Dang J, Geng W, Hu S, Zhang Q (2014) Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv 4(42):22101–22105. https://doi.org/10.1039/c4ra01761g

    Article  CAS  Google Scholar 

  269. Diaz-Chacon L, Metz R, Dieudonné P, Bantignies JL, Tahir S, Hassanzadeh M, Sosa E, Atencio R (2015) Graphite nanoplatelets composite materials: role of the epoxy-system in the thermal conductivity. J Mater Sci Chem Eng 03(05):75–87. https://doi.org/10.4236/msce.2015.35009

    Article  CAS  Google Scholar 

  270. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803. https://doi.org/10.1016/j.carbon.2010.10.014

    Article  CAS  Google Scholar 

  271. Hamidinejad SM, Chu RKM, Zhao B, Park CB, Filleter T (2018) Enhanced thermal conductivity of graphene nanoplatelet-polymer nanocomposites fabricated via supercritical fluid-assisted in situ exfoliation. ACS Appl Mater Interfaces 10(1):1225–1236. https://doi.org/10.1021/acsami.7b15170

    Article  CAS  Google Scholar 

  272. Meng F, Huang F, Guo Y, Chen J, Chen X, Hui D, He P, Zhou X, Zhou Z (2017) In situ intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity. Compos B Eng 117:165–173. https://doi.org/10.1016/j.compositesb.2017.02.043

    Article  CAS  Google Scholar 

  273. Kim HS, Bae HS, Yu J, Kim SY (2016) Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci Rep 6:26825. https://doi.org/10.1038/srep26825

    Article  CAS  Google Scholar 

  274. Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55(1):201–210. https://doi.org/10.1016/j.polymer.2013.11.032

    Article  CAS  Google Scholar 

  275. Cui X, Ding P, Zhuang N, Shi L, Song N, Tang S (2015) Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7(34):19068–19075. https://doi.org/10.1021/acsami.5b04444

    Article  CAS  Google Scholar 

  276. Checchetto R, Miotello A, Nicolais L, Carotenuto G (2014) Gas transport through nanocomposite membrane composed by polyethylene with dispersed graphite nanoplatelets. J Membr Sci 463:196–204. https://doi.org/10.1016/j.memsci.2014.03.065

    Article  CAS  Google Scholar 

  277. Gaska K, Kadar R, Rybak A, Siwek A, Gubanski S (2017) Gas barrier, thermal, mechanical and rheological properties of highly aligned graphene-LDPE nanocomposites. Polymers (Basel) 9(7):294. https://doi.org/10.3390/polym9070294

    Article  CAS  Google Scholar 

  278. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  Google Scholar 

  279. Xiang D, Wang L, Tang Y, Harkin-Jones E, Zhao C, Li Y (2017) Processing-property relationships of biaxially stretched binary carbon nanofiller reinforced high density polyethylene nanocomposites. Mater Lett 209:551–554. https://doi.org/10.1016/j.matlet.2017.08.104

    Article  CAS  Google Scholar 

  280. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  281. Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22(42):4759–4763. https://doi.org/10.1002/adma.201000960

    Article  CAS  Google Scholar 

  282. Al-Jabareen A, Al-Bustami H, Harel H, Marom G (2012) Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. J Appl Polym Sci 128:1534–1539. https://doi.org/10.1002/app.38302

    Article  CAS  Google Scholar 

  283. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci A Chem 1(5):929–942. https://doi.org/10.1080/10601326708053745

    Article  CAS  Google Scholar 

  284. Cussler EL, Hughes SE, Ward WJ, Aris R (1988) Barrier membranes. J Membr Sci 38(2):161–174. https://doi.org/10.1016/S0376-7388(00)80877-7

    Article  CAS  Google Scholar 

  285. Huang H-D, Ren P-G, Chen J, Zhang W-Q, Ji X, Li Z-M (2012) High barrier graphene oxide nanosheet/poly (vinyl alcohol) nanocomposite films. J Membr Sci 409–410:156–163. https://doi.org/10.1016/j.memsci.2012.03.051

    Article  CAS  Google Scholar 

  286. Kamal MR, Jinnah IA, Utracki LA (1984) Permeability of oxygen and water vapor through polyethylene/polyamide films. Polym Eng Sci 24(17):1337–1347. https://doi.org/10.1002/pen.760241711

    Article  Google Scholar 

  287. Eitzman DM, Melkote RR, Cussler EL (1996) Barrier membranes with tipped impermeable flakes. AIChE J 42(1):2–9. https://doi.org/10.1002/aic.690420103

    Article  CAS  Google Scholar 

  288. Aris R (1986) On a problem in hindered diffusion. Arch Ration Mech Anal 95(2):83–91

    Article  Google Scholar 

  289. Falla WF, Mulski M, Cussler EL (1996) Estimating diffusion through flake-filled membranes. J Membr Sci 119:129–138. https://doi.org/10.1016/0376-7388(96)00106-8

    Article  CAS  Google Scholar 

  290. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, Antonio de Saja J, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18(19):2221. https://doi.org/10.1039/b718289a

    Article  CAS  Google Scholar 

  291. Rafiee MA, Rafiee J, Yu ZZ, Koratkar N (2009) Buckling resistant graphene nanocomposites. Appl Phys Lett 95(22):223103. https://doi.org/10.1063/1.3269637

    Article  CAS  Google Scholar 

  292. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  293. Stewart R (2009) Lightweighting the automotive market. Reinf Plast 53(2):14–21

    Article  Google Scholar 

  294. Wang Z, Luo J, Zhao GL (2014) Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv 4(1):017139. https://doi.org/10.1063/1.4863687

    Article  CAS  Google Scholar 

  295. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925. https://doi.org/10.1016/j.carbon.2008.12.038

    Article  CAS  Google Scholar 

  296. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20(20):3924–3930. https://doi.org/10.1002/adma.200800366

    Article  CAS  Google Scholar 

  297. Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA, Nikonov DE (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 88(14):142102. https://doi.org/10.1063/1.2191420

    Article  CAS  Google Scholar 

  298. Lu CC, Lin YC, Yeh CH, Huang JC, Chiu PW (2012) High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6(5):4469–4474. https://doi.org/10.1021/nn301199j

    Article  CAS  Google Scholar 

  299. Nurazzi NM, Abdullah N, Demon SZN, Halim NA, Azmi AFM, Knight VF, Mohamad IS (2021) The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnol Rev 10:330. https://doi.org/10.1515/ntrev-2021-0030

    Article  CAS  Google Scholar 

  300. Krishnan S, Tadiboyina R, Chavali M, Nikolova MP, Wu R-J, Bian D, Jeng Y-R, Rao PTSRKP, Palanisamy P, Pamanji SR (2019) Graphene-based polymer nanocomposites for sensor applications. In: Pal K (ed) Hybrid Nanocomposites. Jenny Stanford Publishing, Boca Raton, pp 1–62. https://doi.org/10.1201/9780429000966-1

    Chapter  Google Scholar 

  301. Zhang Z-x, Dou J-x, He J-h, Xiao C-x, Shen L-y, Yang J-h, Wang Y, Zhou Z-w (2017) Electrically/infrared actuated shape memory composites based on a bio-based polyester blend and graphene nanoplatelets and their excellent self-driven ability. J Mater Chem C 5(17):4145–4158. https://doi.org/10.1039/c7tc00828g

    Article  CAS  Google Scholar 

  302. Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101(6):063112. https://doi.org/10.1063/1.4742331

    Article  CAS  Google Scholar 

  303. Moriche R, Sánchez M, Jiménez-Suárez A, Prolongo SG, Ureña A (2016) Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol 123:65–70. https://doi.org/10.1016/j.compscitech.2015.12.002

    Article  CAS  Google Scholar 

  304. Zheng N, Wang L, Wang H, Gao J, Dong X, Mai Y-W (2019) Conductive graphite nanoplatelets (GNPs)/polyethersulfone (PES) composites with inter-connective porous structure for chemical vapor sensing. Compos Sci Technol 184:107883. https://doi.org/10.1016/j.compscitech.2019.107883

    Article  CAS  Google Scholar 

  305. Xiang D, Zhang X, Han Z, Hang Z, Zhou Z, Harkin-Jones E, Zhang J, Luo X, Wang P, Zhao C, Li Y (2020) 3D printed high-performance flexible strain sensors based on carbon nanotube and graphene nanoplatelet filled polymer composites. J Mater Sci 55:15769–15786. https://doi.org/10.1007/s10853-020-05137-w

    Article  CAS  Google Scholar 

  306. Chen X, Zhang X, Xiang D, Wu Y, Zhao C, Li H, Li Z, Wang P, Li Y (2022) 3D printed high-performance spider web-like flexible strain sensors with directional strain recognition based on conductive polymer composites. Mater Lett 306:130935. https://doi.org/10.1016/j.matlet.2021.130935

    Article  CAS  Google Scholar 

  307. Zhang X, Xiang D, Zhu W, Zheng Y, Harkin-Jones E, Wang P, Zhao C, Li H, Wang B, Li Y (2020) Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges. Compos Sci Techno 200:108437. https://doi.org/10.1016/j.compscitech.2020.108437

    Article  CAS  Google Scholar 

  308. Bhol P, Yadav S, Altaee A, Saxena M, Misra PK, Samal AK (2021) Graphene-based membranes for water and wastewater treatment: a review. ACS Appl Nano Mater 4(4):3274–3293. https://doi.org/10.1021/acsanm.0c03439

    Article  CAS  Google Scholar 

  309. Bonetti L, Fiorati A, Serafini A, Masotti G, Tana F, D’Agostino A, Draghi L, Altomare L, Chiesa R, Farè S, Bianchi M, Rizzi LG, De Nardo L (2020) Graphene nanoplatelets composite membranes for thermal comfort enhancement in performance textiles. J Appl Polym Sci 138(2):e49645. https://doi.org/10.1002/app.49645

    Article  CAS  Google Scholar 

  310. Lu Y, Lyu H, Richardson AG, Lucas TH, Kuzum D (2016) Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci Rep 6(1):33526. https://doi.org/10.1038/srep33526

    Article  CAS  Google Scholar 

  311. Wasfi A, Awwad F, Ayesh AI (2018) Graphene-based nanopore approaches for DNA sequencing: a literature review. Biosens Bioelectron 119:191–203. https://doi.org/10.1016/j.bios.2018.07.072

    Article  CAS  Google Scholar 

  312. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. https://doi.org/10.1021/cr068123a

    Article  CAS  Google Scholar 

  313. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304. https://doi.org/10.1016/j.carbon.2012.09.031

    Article  CAS  Google Scholar 

  314. Ghanbarzadeh S, Hamishehkar H (2017) Application of graphene and its derivatives in cancer diagnosis and treatment. Drug Res 67(12):681–687. https://doi.org/10.1055/s-0042-115638

    Article  CAS  Google Scholar 

  315. Sheng Y, Tang X, Peng E, Xue J (2013) Graphene oxide based fluorescent nanocomposites for cellular imaging. J Mater Chem B 1(4):512–521. https://doi.org/10.1039/C2TB00123C

    Article  CAS  Google Scholar 

  316. Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett 10(3):53. https://doi.org/10.1007/s40820-018-0206-4

    Article  CAS  Google Scholar 

  317. Kaur T, Thirugnanam A, Pramanik K (2017) Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering. Mater Today Commun 12:34–42. https://doi.org/10.1016/j.mtcomm.2017.06.004

    Article  CAS  Google Scholar 

  318. Scaffaro R, Botta L, Maio A, Gallo G (2017) PLA graphene nanoplatelets nanocomposites: physical properties and release kinetics of an antimicrobial agent. Compos B Eng 109:138–146. https://doi.org/10.1016/j.compositesb.2016.10.058

    Article  CAS  Google Scholar 

  319. Afroj S, Islam MH, Karim N (2021) Multifunctional graphene-based wearable E-textiles. Multidiscip Digit Publ Inst Proc 68(1):11. https://doi.org/10.3390/proceedings2021068011

    Article  Google Scholar 

  320. Service RF (2003) Electronic textiles charge ahead. Science 301(5635):909–911. https://doi.org/10.1126/science.301.5635.909

    Article  Google Scholar 

  321. Karim N, Afroj S, Malandraki A, Butterworth S, Beach C, Rigout M, Novoselov KS, Casson AJ, Yeates SG (2017) All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C 5(44):11640–11648. https://doi.org/10.1039/c7tc03669h

    Article  CAS  Google Scholar 

  322. Jiang H, Wang H, Liu G, Su Z, Wu J, Liu J, Zhang X, Chen Y, Zhou W (2017) Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices. J Alloys Compd 699:1049–1056. https://doi.org/10.1016/j.jallcom.2016.12.435

    Article  CAS  Google Scholar 

  323. Mirabedini A, Ang A, Nikzad M, Fox B, Lau KT, Hameed N (2020) Evolving strategies for producing multiscale graphene-enhanced fiber-reinforced polymer composites for smart structural applications. Adv Sci (Weinh) 7(11):1903501. https://doi.org/10.1002/advs.201903501

    Article  CAS  Google Scholar 

  324. Cataldi P, Ceseracciu L, AthanassiouBayer AIS (2017) Healable cotton-graphene nanocomposite conductor for wearable electronics. ACS Appl Mater Interfaces 9(16):13825–13830. https://doi.org/10.1021/acsami.7b02326

    Article  CAS  Google Scholar 

  325. Yang K, Li Y, Tan X, Peng R, Liu Z (2013) Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9(9–10):1492–1503. https://doi.org/10.1002/smll.201201417

    Article  CAS  Google Scholar 

  326. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9(16):8778–8881. https://doi.org/10.1039/c8ra09577a

    Article  CAS  Google Scholar 

  327. Ferrari AC, Bonaccorso F, Fal’ko V et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810. https://doi.org/10.1039/c4nr01600a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Erciyes University Scientific Research Unit (EUBAP) under contract number FBD-2020-10069. Author(s) would like to thank this invaluable support. Author(s) also thank to the Technology Research and Application Center (TAUM) and Nanotechnology Research Center (ERNAM) at Erciyes University.

Funding

This research received a grant from Erciyes University Scientific Research Unit (EUBAP) under contract number FBD-2020-10069.

Author information

Authors and Affiliations

Authors

Contributions

KB: Methodology, conceptualization, supervision, formal analysis, writing–review & editing, MA: Investigation, experimental designing, visualization, resources, writing and draft preparation and reference management.

Corresponding author

Correspondence to Kadir Bilisik.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilisik, K., Akter, M. Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties. J Mater Sci 57, 7425–7480 (2022). https://doi.org/10.1007/s10853-022-07092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07092-0

Navigation