Skip to main content
Log in

Hydroxypropyl methyl cellulose-based gel polymer electrolyte provides a fast migration channel for sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Most gel polymer electrolytes (GPEs) for sodium-ion batteries developed at present have some problems, such as limited absorption uptake of liquid electrolyte (LE) and low ionic conductivity of corresponding GPEs caused by the difficulty of transporting sodium ions with large radius. In view of these problems, hydroxypropyl methyl cellulose (HPMC) is used as raw material to prepare high-performance HPMC-based GPE (HPMC-GPE). When HPMC membrane is added to the LE containing NaClO4 and propylene carbonate (PC) will lead to the ring-opening polymerization of PC, and the products of ring-opening polymerization of PC will be grafted into HPMC side chain. This destroys the dense structure of HPMC membrane and enhances the affinity of HPMC membrane to LE, and then, a large amount of LE (up to 1796 wt.%) can be stored in the molecular chain of HPMC. With the thermal movement of HPMC molecular chain, the volume of HPMC molecular increases significantly in 3D space, providing a large free volume and fast migration channel for sodium ions conduction. The experimental results show that the ionic conductivity of HPMC-GPE is 3.3 × 10–3 S cm−1 and has an electrochemical stability window of 4.72 V. SIB assembled with SnS/rGO working electrode, sodium metal counter electrode and HPMC-GPE has good rate performance and cycle stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zheng J, Zhao Y, Feng X, Chen W, Zhao Y (2018) J Mater Chem 6:6559. https://doi.org/10.1039/C8TA00530C

    Article  CAS  Google Scholar 

  2. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Chem Rev 114:11636. https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  3. Robinson JB, Finegan DP, Heenan TMM et al (2018). J Electrochem Energy Conversion Storage. https://doi.org/10.1115/1.4038518

    Article  Google Scholar 

  4. Slater MD, Kim D, Lee E, Johnson CS (2013) Adv Func Mater 23:947. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  5. Lee H, Kim Y-I, Park J-K, Choi JW (2012) Chem Commun 48:8416. https://doi.org/10.1039/C2CC33771A

    Article  CAS  Google Scholar 

  6. Yue Y, Binder AJ, Guo B et al (2014) Angew Chem Int Ed 53:3134. https://doi.org/10.1002/anie.201310679

    Article  CAS  Google Scholar 

  7. Zeng Z, Jiang X, Li R et al (2016) Adv Sci 3:1600066. https://doi.org/10.1002/advs.201600066

    Article  CAS  Google Scholar 

  8. Chaudhari AK, Singh VB (2015) J Electrochem Soc 162:D341. https://doi.org/10.1149/2.0271508jes

    Article  CAS  Google Scholar 

  9. Kim, Yoon G, Park I et al (2015) Energy Environ Sci 8:3325. https://doi.org/10.1039/C5EE01876E

    Article  CAS  Google Scholar 

  10. Scrosati B (2001) Chem Rec 1:173. https://doi.org/10.1002/tcr.7

    Article  CAS  Google Scholar 

  11. Zhou D, Fan L-Z, Fan H, Shi Q (2013) Electrochim Acta 89:334. https://doi.org/10.1016/j.electacta.2012.11.090

    Article  CAS  Google Scholar 

  12. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) Solid State Ionics 269:1. https://doi.org/10.1016/j.ssi.2014.11.015

    Article  CAS  Google Scholar 

  13. Gao H, Zhou W, Park K, Goodenough JB (2016) Adv Energy Mater 6:1600467. https://doi.org/10.1002/aenm.201600467

    Article  CAS  Google Scholar 

  14. Dong Q, Zhou M, Lin X, Shen L, Feng Y (2018) Eur J Pharm Sci 119:147. https://doi.org/10.1016/j.ejps.2018.04.001

    Article  CAS  Google Scholar 

  15. Henry N, Clouet J, Fragale A et al (2017) Drug Deliv 24:999. https://doi.org/10.1080/10717544.2017.1340362

    Article  CAS  Google Scholar 

  16. Owusu-Ware SK, Boateng JS, Chowdhry BZ, Antonijevic MD (2019) Int J Pharmaceut: X 1:100033. https://doi.org/10.1016/j.ijpx.2019.100033

    Article  CAS  Google Scholar 

  17. Barik B, Nayak PS, Achary LSK, Kumar A, Dash P (2020) New J Chem 44:322. https://doi.org/10.1039/C9NJ03945G

    Article  CAS  Google Scholar 

  18. Wrona M, Cran MJ, Nerin C, Bigger SW (2017) Carbohydr Polym 156:108. https://doi.org/10.1016/j.carbpol.2016.08.094

    Article  CAS  Google Scholar 

  19. Wang M, Xu H, Yang Z et al (2019) ACS Appl Mater Interfaces 11:41363. https://doi.org/10.1021/acsami.9b14098

    Article  CAS  Google Scholar 

  20. Xu K (2004) Chem Rev 104:4303. https://doi.org/10.1021/cr030203g

    Article  CAS  Google Scholar 

  21. R Kent Murmann, RC Thompson (1970) J Inorgan Nuclear Chem. 32, 1404. Doi: https://doi.org/10.1016/0022-1902(70)80147-6

  22. Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) J Electrochem Soc 134:1611. https://doi.org/10.1149/1.2100722

    Article  CAS  Google Scholar 

  23. Zhang XQ, Chen MJ, Liu CF, Zhang AP, Sun RC (2015) Molecules 20:6033. https://doi.org/10.3390/molecules20046033

    Article  CAS  Google Scholar 

  24. Zheng J, Engelhard MH, Mei D et al (2017) Nat Energy 2:17012. https://doi.org/10.1038/nenergy.2017.12

    Article  CAS  Google Scholar 

  25. Duval A, Avérous L (2016) ACS Sustain Chem Eng 4:3103. https://doi.org/10.1021/acssuschemeng.6b00081

    Article  CAS  Google Scholar 

  26. Logan MW, Langevin S, Tan B et al (2020) J Mater Chem A 8:8485. https://doi.org/10.1039/d0ta01901a

    Article  CAS  Google Scholar 

  27. Long L, Wang S, Xiao M, Meng Y (2016) J Mater Chem A 4:10038. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  28. A Manuel Stephan, KS Nahm (2006) Polymer. 47, 5952. Doi:https://doi.org/10.1016/j.polymer.2006.05.069

  29. Hwang J-Y, Myung S-T, Sun Y-K (2017) Chem Soc Rev 46:3529. https://doi.org/10.1039/C6CS00776G

    Article  CAS  Google Scholar 

  30. Lu YC, Ma C, Alvarado J, Dimov N, Meng YS, Okada S (2015) J Mater Chem 3:16971. https://doi.org/10.1039/C5TA03893F

    Article  CAS  Google Scholar 

  31. Wu L, Lu H, Xiao L et al (2014) J Mater Chem A 2:16424. https://doi.org/10.1039/C4TA03365E

    Article  CAS  Google Scholar 

  32. Xia C, Zhang F, Liang H, Alshareef HN (2017) Nano Res 10:4368. https://doi.org/10.1007/s12274-017-1722-0

    Article  CAS  Google Scholar 

  33. Luo C, Shen T, Ji H et al (2020) Small 16:e1906208. https://doi.org/10.1002/smll.201906208

    Article  CAS  Google Scholar 

  34. Kim JI, Choi Y, Chung KY, Park JH (2017). Adv Func Mater. https://doi.org/10.1002/adfm.201701768

    Article  Google Scholar 

  35. Seh ZW, Sun J, Sun Y, Cui Y (2015) ACS Cent Sci 1:449. https://doi.org/10.1021/acscentsci.5b00328

    Article  CAS  Google Scholar 

  36. Yu Q, Lu Q, Qi X et al (2019) Energy Storage Mater 23:610. https://doi.org/10.1016/j.ensm.2019.03.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology innovation research and development project of Chengdu Science and Technology Bureau (2019-YF05-02393-SN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Huang, Zhaomin Tang or Haijun Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiepeng Chen and Chen Luo are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Luo, C., Huang, Y. et al. Hydroxypropyl methyl cellulose-based gel polymer electrolyte provides a fast migration channel for sodium-ion batteries. J Mater Sci 57, 4311–4322 (2022). https://doi.org/10.1007/s10853-022-06920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06920-7

Navigation