Skip to main content
Log in

Selective metallization on additive manufactured polymer for fabrication of integrated device

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advanced electronic devices are supposed to highly integrated, such as wearable electronics, bioelectronics, and light-emitting diodes. The circuits are required to be fabricated compactly to the structure. This study proposed an approach to achieve close fabrication of circuit and structure. We used digital light processing additive manufacturing to rapidly form substrate structure, which is composed of ultraviolet-curable resin and Cu2(OH)PO4 particle. The substrate structure was then processed by laser activation and electroless plating metallization. As a result, the selective circuit can be fabricated on the surface of substrate structure. A series of characterizations were conducted using SEM, XPS, CLSM, and so on to investigate the morphology and analyze the surface chemistry of composite. After 5 min electroless copper plating, the resistivity of copper circuit on composite were 7.5 × 10−8 Ω·m. The obtained copper layer has good adhesion property (highest 5B level after adhesion test). This work provides an approach for complex structures of circuit and structure integrated devices, which has a potential application in advanced electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Horiuchi S, Fujita T, Hayakawa T, Nakao Y (2003) Micropatterning of metal nanoparticles via UV photolithography. Adv Mater 15(17):1449–1452. https://doi.org/10.1002/adma.200305270

    Article  CAS  Google Scholar 

  2. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15(11):2208–2217. https://doi.org/10.1021/cm021804b

    Article  CAS  Google Scholar 

  3. Chen S, Su M, Zhang C, Gao M, Bao B, Yang Q, Su B, Song Y (2015) Fabrication of nanoscale circuits on inkjet-printing patterned substrates. Adv Mater 27(26):3928. https://doi.org/10.1002/adma.201500225

    Article  CAS  Google Scholar 

  4. Zhang J, Feng J, Jia L, Zhang H, Zhang G, Sun S, Zhou T (2019) Laser-induced selective metallization on polymer substrates using organocopper for portable electronics. ACS Appl Mater Interf 11(14):13714–13723. https://doi.org/10.1021/acsami.9b01856

    Article  CAS  Google Scholar 

  5. Rubino F, Tucci F, Esperto V, Perna AS, Astarita A, Carlone P, Squillace A (2020) Metallization of fiber reinforced composite by surface functionalization and cold spray deposition. Procedia Manuf 47:1084–1088. https://doi.org/10.1016/j.promfg.2020.04.353

    Article  Google Scholar 

  6. Zhang B, Chen C, Li W, Yeom J, Suganuma K (2019) Well-controlled decomposition of copper complex inks enabled by metal nanowire networks for highly compact, conductive, and flexible copper films. Adv Mater Interf 7(1):1901550. https://doi.org/10.1002/admi.201901550

    Article  CAS  Google Scholar 

  7. Feng S, Tian Z, Wang J, Cao S, Kong D (2019) Laser sintering of Zn microparticles and its application in printable biodegradable electronics. Adv Electr Mater 5(3):1800693. https://doi.org/10.1002/aelm.201800693

    Article  CAS  Google Scholar 

  8. Wu LQ, Chen X, Zhu LZ (2020) Study of surface metallization on the electromagnetic shielding performance of carbon fiber reinforced composite. J Phys Conf Ser 1605(1):12142. https://doi.org/10.1088/1742-6596/1605/1/012142

    Article  CAS  Google Scholar 

  9. Yin S, Xie Y, Li R, Zhang J, Zhou T (2020) Polymer-metal hybrid material with an ultra-high interface strength based on mechanical interlocking via nanopores produced by electrochemistry. Ind Eng Chem Res 59(27):12409–12420. https://doi.org/10.1021/acs.iecr.0c01304

    Article  CAS  Google Scholar 

  10. Zhang J, Feng J, Jia L, Xu R, Zhao J, Zheng Z, Zhou T (2020) Top-down direct preparation of orange-yellow dye similar to psittacofulvins from commercial polymer by laser writing. ACS Appl Mater Interf 12(52):58339–58348. https://doi.org/10.1021/acsami.0c15471

    Article  CAS  Google Scholar 

  11. Feng J, Zhang J, Zheng Z, Zhou T (2019) New strategy to achieve laser direct writing of polymers: fabrication of the color-changing microcapsule with a core-shell structure. ACS Appl Mater Interf 11(44):41688–41700. https://doi.org/10.1021/acsami.9b15214

    Article  CAS  Google Scholar 

  12. Chang H, Guo R, Sun Z, Wang H, Hou Y, Wang Q, Rao W, Liu J (2018) Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Adv Mater Interf 5(20):1800571. https://doi.org/10.1002/admi.201800571

    Article  CAS  Google Scholar 

  13. Greenberg E, Armon N, Kapon O, Ben Ishai M, Shpaisman H (2019) Nanostructure and mechanism of metal deposition by a laser-induced photothermal reaction. Adv Mater Interf 6(14):1900541. https://doi.org/10.1002/admi.201900541

    Article  CAS  Google Scholar 

  14. Ko T, Oh KH, Moon M (2015) Plasma-induced hetero-nanostructures on a polymer with selective metal Co-deposition. Adv Mater Interf 2(1):1400431. https://doi.org/10.1002/admi.201400431

    Article  CAS  Google Scholar 

  15. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C (2018) EGaIn–metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interf 5(10):1701596. https://doi.org/10.1002/admi.201701596

    Article  CAS  Google Scholar 

  16. Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng KQ (2018) Oxidant concentration modulated metal/silicon interface electrical field mediates metal-assisted chemical etching of silicon. Adv Mater Interf 5(23):1801132. https://doi.org/10.1002/admi.201801132

    Article  CAS  Google Scholar 

  17. Franke J (2014) Three-dimensional molded interconnect devices (3D-MID). Three-dimensional molded interconnect devices (3D-MID): I–XII

  18. Tang J, Zhao X, Li J, Liu J (2018) Thin, porous, and conductive networks of metal nanoparticles through electrochemical welding on a liquid metal template. Adv Mater Interf 5(19):1800406. https://doi.org/10.1002/admi.201800406

    Article  CAS  Google Scholar 

  19. Han J, Zhang H, Zhong G (2019) Metallization and superconductivity in potassium-doped methane. Int J Mod Phys C 30(08):1950061. https://doi.org/10.1142/S012918311950061X

    Article  CAS  Google Scholar 

  20. Afshar A, Mihut D (2020) Enhancing durability of 3D printed polymer structures by metallization. J Mater Sci Technol 53:185–191. https://doi.org/10.1016/j.jmst.2020.01.072

    Article  Google Scholar 

  21. Mwanda JA, Cuesta A (2019) Electrochemical metallization of molecular adl-ayers. Curr Opin Electrochem 17:72–78. https://doi.org/10.1016/j.coelec.2019.04.022

    Article  CAS  Google Scholar 

  22. Bahners T, Gebert B, Prager A, Hartmann N, Hagemann U, Gutmann JS (2018) UV-light assisted patterned metallization of textile fabrics. Appl Surf Sci 436:1093–1103. https://doi.org/10.1016/j.apsusc.2017.12.119

    Article  CAS  Google Scholar 

  23. Tang G, Li M, Sun P, Huang F, Wang X, Wei B (2018) Surface metallization influence on equivalence of laser simulation of dose-rate effects. IEEE Trans Nucl Sci 65(12):2852–2861. https://doi.org/10.1109/TNS.2018.2879062

    Article  CAS  Google Scholar 

  24. Venäläinen A, Meinander K, Räisänen M, Tuboltsev V, Räisänen J (2018) Metallization of self-assembled organic monolayer surfaces by Pd nanocluster deposition. Surf Sci 677:68–77. https://doi.org/10.1016/j.susc.2018.06.006

    Article  CAS  Google Scholar 

  25. Wen L, Zhou T, Zhang J, Zhang A (2016) Local controllable laser patterning of polymers induced by graphene material. ACS Appl Mater Interf 8(41):28077–28085. https://doi.org/10.1021/acsami.6b09504

    Article  CAS  Google Scholar 

  26. Li J, Zhang Y, Wang P, Wang G, Liu Y, Liu Y, Li Q (2021) Selectively metalizable stereolithography resin for three-dimensional DC and high-frequency electronics via hybrid additive manufacturing. ACS Appl Mater Interf 13(19):22891–22901. https://doi.org/10.1021/acsami.1c01199

    Article  CAS  Google Scholar 

  27. Cardoso RM, Kalinke C, Rocha RG, Dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RAA (2020) Additive manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta 1118:73–91. https://doi.org/10.1016/j.aca.2020.03.028

    Article  CAS  Google Scholar 

  28. Zheng Y, Zhang W, Baca Lopez DM, Ahmad R (2021) Scientometric analysis and systematic review of multi-material additive manufacturing of polymers. Polymers 13(12):1957. https://doi.org/10.3390/polym13121957

    Article  CAS  Google Scholar 

  29. Mu Q, Wang L, Dunn CK, Kuang X, Duan F, Zhang Z, Qi HJ, Wang T (2017) Digital light processing 3D printing of conductive complex structures. Addit Manuf 18:74–83. https://doi.org/10.1016/j.addma.2017.08.011

    Article  CAS  Google Scholar 

  30. Zhou HXJZ (2021) Fabrication of copper patterns on polydimethylsiloxane through laser-induced selective metallization. Ind Eng Chem Res 24:8821–8828. https://doi.org/10.1021/acs.iecr.1c01668

    Article  CAS  Google Scholar 

  31. Zhang J, Zhou T, Wen L, Zhang A (2016) Fabricating Metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl Mater Interf 8(49):33999–34007. https://doi.org/10.1021/acsami.6b11305

    Article  CAS  Google Scholar 

  32. Balzereit S, Proes F, Altstädt V, Emmelmann C (2018) Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers. Addit Manuf 23:347–354. https://doi.org/10.1016/j.addma.2018.08.016

    Article  CAS  Google Scholar 

  33. Li J, Wang Y, Xiang G, Liu H, He J (2019) Hybrid additive manufacturing method for selective plating of freeform circuitry on 3D printed plastic structure. Adv Mater Technol 4(2):1800529. https://doi.org/10.1002/admt.201800529

    Article  CAS  Google Scholar 

  34. Angel K, Tsang HH, Bedair SS, Smith GL, Lazarus N (2018) Selective electroplating of 3D printed parts. Addit Manuf 20:164–172. https://doi.org/10.1016/j.addma.2018.01.006

    Article  CAS  Google Scholar 

  35. Amend P, Pscherer C, Rechtenwald T, Frick T, Schmidt M (2010) A fast and flexible method for manufacturing 3D molded interconnect devices by the use of a rapid prototyping technology. Phys Procedia 5:561–572. https://doi.org/10.1016/j.phpro.2010.08.084

    Article  CAS  Google Scholar 

  36. Zhao F, Jiao C, Xie D, Lu B, Qiu M, Yi X, Liu J, Wang C, Shen L, Tian Z (2020) Research on laser-assisted selective metallization of a 3D printed ceramic surface. RSC Adv 10(72):44015–44024. https://doi.org/10.1039/D0RA08499A

    Article  CAS  Google Scholar 

  37. Wang G, Huang B, Ma X, Wang Z, Qin X, Zhang X, Dai Y, Whangbo M (2013) Cu2(OH)PO4, a near-infrared-activated photocatalyst. Angew Chem Int Ed 52(18):4810–4813. https://doi.org/10.1002/anie.201301306

    Article  CAS  Google Scholar 

  38. Lu X, Thomas PJ, Zhang Y, Liao H, Gomes S, Hellevang JO (2020) Characterization of optical fibers directly embedded on metal using a particle spray-based method. IEEE Sens J 20(12):6414–6421. https://doi.org/10.1109/JSEN.2020.2977251

    Article  CAS  Google Scholar 

  39. Hinckley AC, Wang C, Pfattner R, Kong D, Zhou Y, Ecker B, Gao Y, Bao Z (2016) Investigation of a solution-processable, nonspecific surface modifier for low cost, high work function electrodes. ACS Appl Mater Interf 8(30):19658–19664. https://doi.org/10.1021/acsami.6b05348

    Article  CAS  Google Scholar 

  40. Gedvilas M, Ratautas K, Kacar E, Stankevičienė I, Jagminienė A, Norkus E, Li Pira N, Račiukaitis G (2016) Colour-difference measurement method for evaluation of quality of electrolessly deposited copper on polymer after laser-induced selective activation. Sci Rep. https://doi.org/10.1038/srep22963

    Article  Google Scholar 

  41. Zhang J, Zhou T, Wen L, Zhao J, Zhang A (2016) A simple way to achieve legible and local controllable patterning for polymers based on a near-infrared pulsed laser. ACS Appl Mater Interf 8(3):1977–1983. https://doi.org/10.1021/acsami.5b10243

    Article  CAS  Google Scholar 

  42. Rytlewski P (2014) Laser-assisted metallization of composite coatings containing copper (II) acetylacetonate and copper (II) oxide or copper (II) hydroxide. Surf Coat Technol 259(C):660–666. https://doi.org/10.1016/j.surfcoat.2014.10.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Provincial Key Research and Development Program (No. BE2019002) and the China Postdoctoral Science Foundation (Nos. 2020M671475, 2020M671455, 2020TQ0141). The authors also extend their science thanks to those who contributed in instructions and experiments work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Zhao.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xie, D., Jiao, C. et al. Selective metallization on additive manufactured polymer for fabrication of integrated device. J Mater Sci 57, 1506–1515 (2022). https://doi.org/10.1007/s10853-021-06695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06695-3

Navigation