Skip to main content
Log in

High uptake and fixation ability of BC monolayer for CO and NO toxic gases: a computational analysis

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 27 September 2021

This article has been updated

Abstract

Two-dimensional (2D) monolayers have opened a new door for further studies in search of multifunctional materials. In addition to the interesting properties that these monolayers exhibit on their own, these properties can be tuned by doping, creating defects or adatom adsorption processes. Recent research has focused on determining in what technological areas these monolayers can be used. Boron carbide (BC) is a new single layer material that has been shown to be stable from the boron-doped graphene family, but its uses, such as its sensing, uptaking and fixation ability of toxic gases, have not been fully determined yet. This study is a step taken in order to fill the gap in this field. Adsorption of CO and NO molecules on the BC monolayer has been investigated by using first principles DFT methods. After structural optimization, the adsorption energies have been computed for the model systems. Electronic properties of stable structures have been determined by introducing the total and partial DOS plots and charge distributions. Our results revealed that BC monolayer successfully adsorbed CO and NO toxic gases. Thus, useful information was provided for possible applications of a base material, such as detection, uptake, and fixation of toxic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Change history

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  3. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  5. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  Google Scholar 

  6. Yoon HJ, Jun DH, Yang JH, Zhou Z (2011) Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem 157:310–313

    Article  CAS  Google Scholar 

  7. Singh E, Meyyappan M, Nalwa HS (2017) Flexible graphene-based wearable gas and chemical sensors. ACS Appl Mater Interfaces 9:34544–34586

    Article  CAS  Google Scholar 

  8. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  9. Xianglong L, Linjie Z (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47:3189–3216

    Article  Google Scholar 

  10. Kumar R, Singh R, Hui D, Feo L, Fraternali F (2018) Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos B 34:193–206

    Article  CAS  Google Scholar 

  11. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896

    Article  CAS  Google Scholar 

  12. Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  CAS  Google Scholar 

  13. Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  CAS  Google Scholar 

  14. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002

    Article  CAS  Google Scholar 

  15. Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112:176802

    Article  CAS  Google Scholar 

  16. Aktürk OÜ, Ongun Özçelik V, Ciraci S (2015) Single-layer crystalline phases of antimony: antimonenes. Phys Rev B 91:235446

    Article  CAS  Google Scholar 

  17. Kamal C, Ezawa M (2015) Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B 91:085423

    Article  CAS  Google Scholar 

  18. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640–652

    Article  CAS  Google Scholar 

  19. Ongun Özçelik V, Kecik D, Durgun E, Ciraci S (2015) Adsorption of group IV elements on graphene, silicene, germanene, and stanene: Dumbbell formation. J Phys Chem C 119:845–853

    Article  CAS  Google Scholar 

  20. Li S, Wu Y, Tu Y et al (2015) Defects in silicene: vacancy clusters. Ext Line Defects Di-adatoms Sci Rep 5:7881

    Google Scholar 

  21. Sun X, Liu Y, Song Z, Li Y, Wang W, Lin H, Wang L, Li Y (2017) Structures, mobility and electronic properties of point defects in arsenene, antimonene and an antimony arsenide alloy. J Mater Chem C 5:4159–4166

    Article  CAS  Google Scholar 

  22. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80:155453

    Article  CAS  Google Scholar 

  23. Zhang K, Feng Y, Wang F, Yang Z, Wang J (2017) Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5:11992–12022

    Article  CAS  Google Scholar 

  24. Bhauriyal P, Mahata A, Pathak B (2018) Graphene-like carbon-nitride monolayer: a potential anode material for Na- and K-ion batteries. J Phys Chem C 122:2481–2489

    Article  CAS  Google Scholar 

  25. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

  26. Luo B, Yao Y, Tian E, Song H, Wang X, Li G et al (2019) Graphene-like monolayer monoxides and monochlorides. PNAS 116:17213–17218

    Article  CAS  Google Scholar 

  27. Wu S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  28. Wang X, Zeng Z, Ahn H, Wang G (2009) First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl Phys Lett 95:183103

    Article  CAS  Google Scholar 

  29. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphenenanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434

    Article  CAS  Google Scholar 

  30. Torres AE, Flores R, Fomina L, Fomine S (2016) Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations. Mol Simul 42:1512–1518

    Article  CAS  Google Scholar 

  31. Agnoli S, Favaro M (2016) Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A 4:5002–5025

    Article  CAS  Google Scholar 

  32. Yanagisawa H, Tanaka T, Ishida Y, Matsue M, Rokuta E, Otani S, Oshima C (2004) Phonon dispersion curves of a \(BC_3\) honeycomb epitaxial sheet. Phys Rev Lett 93:177003

    Article  CAS  Google Scholar 

  33. Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S-H, Gong X, Xiang H (2001) Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc 133:16285–16290

    Article  CAS  Google Scholar 

  34. Zhou L, Gao J, Liu Y, Liang J, Javid M, Shah A, Dong X, Yu H, Quan X (2019) Template synthesis of novel monolayer \(B_{4}C\) ultrathin film. Ceram Int 45:2909–2916

    Article  CAS  Google Scholar 

  35. Nersisyan HH, Yoo BU, Joo SH, Lee TH, Lee KH, Lee JH (2015) Polymer assisted approach to two-dimensional (2D) nanosheets of \(B_{4}C\). Chem Eng J 281:218–226

    Article  CAS  Google Scholar 

  36. Ling C, Mizuno F (2014) Boron-doped graphene as a promising anode for Na-ion batteries. Phys Chem Chem Phys 16:10419–10424

    Article  CAS  Google Scholar 

  37. Das D, Hardikar RP, Han SS, Lee K-R, Singh AK (2017) Monolayer \(BC-2\): an ultrahigh capacity anode material for Li ion batteries. Phys Chem Chem Phys 19:24230–24239

    Article  CAS  Google Scholar 

  38. Gong S, Wang Q (2017) Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J Phys Chem C 121:24418–24424

    Article  CAS  Google Scholar 

  39. Ji S, Zhao J (2018) Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. New J Chem 42:16346–16353

    Article  CAS  Google Scholar 

  40. Velázquez-López L-F, Pacheco-Ortin S-M, Mejía-Olvera R, Agacino-Valdés E (2019) DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications. J Mol Model 25:91

    Article  CAS  Google Scholar 

  41. Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) Study on the adsorption properties of \(O_3\), \(SO_2\), and \(SO_3\) on B-doped graphene using DFT calculations. J Solid State Chem 237:204–210

    Article  CAS  Google Scholar 

  42. Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95:232105

    Article  CAS  Google Scholar 

  43. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  44. Mahabal MS, Deshpande MD, Hussain T, Ahuja R (2015) Sensing characteristics of a graphene-like boron carbide monolayer towards selected toxic gases. Chem Phys Chem 16:3511–3517

    Article  CAS  Google Scholar 

  45. Aghaei SM, Monshi MM, Torres I, Zeidi SMJ, Calizo I (2018) DFT study of adsorption behavior of NO, CO, \(NO_2\), and \(NH_3\) molecules on graphene-like \(BC_3\): a search for highly sensitive molecular sensorApplied. Surf Sci 427:326–333

    Article  CAS  Google Scholar 

  46. Naqvi SR, Hussain T, Gollu SR, Luo W, Ahuja R (2020) Superior sensitivity of metal functionalized boron carbide (\(BC_3\)) monolayer towards carbonaceous pollutants. Appl Surf Sci 512:145637

    Article  CAS  Google Scholar 

  47. Tang Y, Cui X, Chen W, Zhu D, Chai H, Dai X (2018) A theoretical study on metal atom-modified \(BC_3\) sheets for effects of gas molecule adsorptions. Appl Phys A 124:434

    Article  CAS  Google Scholar 

  48. Yeganeh M, Saraf HH, Kafi F, Boochani A (2020) First principles investigation of vibrational, electronic and optical properties of graphene-like boron carbide. Solid State Commun 305:113750

    Article  CAS  Google Scholar 

  49. Mishra P, Singh D, Sonvane Y, Ahuja R (2020) Excitonic effects in the optoelectronic properties of graphene-like BC monolayer. Opt Mater 110:110476

    Article  CAS  Google Scholar 

  50. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  52. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  53. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 50:1758

    Article  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  55. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  56. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 6:6671

    Article  Google Scholar 

  57. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  58. Broyden CG (1970) The Convergence of a class of double-rank minimization algorithms 1. General considerations. J Inst Math Appl 6:76–90

    Article  Google Scholar 

  59. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  60. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari PRM, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(395502):395502

    Article  Google Scholar 

  61. Wang W, Zhang Y, Shen C, Chai Y (2016) Adsorption of CO molecules on doped graphene: a first-principles study. AIP Adv 6:025317

    Article  CAS  Google Scholar 

  62. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  CAS  Google Scholar 

  63. Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of \(H_{2}O\), \(NH_3\), CO, \(NO_2\), and NO on graphene: a first-principles study. Phys Rev B 77:125416

    Article  CAS  Google Scholar 

  64. Gao H, Liu Z (2017) DFT study of NO adsorption on pristine graphene. RSC Adv 7:13082–13091

    Article  CAS  Google Scholar 

  65. Cai Y, Ke Q, Zhang G, Zhang Y-W (2015) Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J Phys Chem C 119:3102–3130

    Article  CAS  Google Scholar 

  66. Lei S, Gao R, Sun X, Guo S, Yu H, Wan N, Xu F, Chen J (2019) Nitrogen-based gas molecule adsorption of monolayer phosphorene under metal functionalization. Sci Rep 9:12498

    Article  CAS  Google Scholar 

  67. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states - I-Orbital degeneracy. Proc R Soc London A 161:220–235

    Article  CAS  Google Scholar 

  68. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: part 1. Charge Partit Theory Methodol RSC Adv 6:47771–47801

    CAS  Google Scholar 

  69. Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727–45747

    Article  CAS  Google Scholar 

  70. Manz TA (2017) Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC Adv 7:45552–45581

    Article  CAS  Google Scholar 

  71. Mills G, Jonsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337

    Article  CAS  Google Scholar 

  72. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  73. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  74. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computing resources used in this work were provided by the TUBITAK (The Scientific and Technical Research Council of Turkey) ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e Infrastructure). CK also acknowledged the scientific collaboration with the TARLA project funded by the Presidency of Turkey, Strategy and Budget Department Grant No: 2006K12-827. HA and EA acknowledge support from Alexander von Humboldt Foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagil Kaderoglu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to correct the designation of author affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaderoglu, C., Akturk, E. & Arkin, H. High uptake and fixation ability of BC monolayer for CO and NO toxic gases: a computational analysis. J Mater Sci 56, 18566–18580 (2021). https://doi.org/10.1007/s10853-021-06524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06524-7

Navigation