Skip to main content

Advertisement

Log in

A review on recent advances in carbon-based dielectric system for microwave absorption

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microwave absorbing materials (MAMs), which have been highly developed in the past two decades, are being regarded as a kind of functional materials to combat electromagnetic (EM) pollution, because they can provide sustainable energy conversion rather than simple reflection of incident EM waves. Although traditional magnetic materials can dissipate EM energy effectively, they always suffer from some intrinsic drawbacks, such as high density, easy corrosion, and skin effect, which make them unpopular in many practical applications. Therefore, the rational design of pure dielectric system without any magnetic components is becoming a new frontier topic for MAMs. Among various candidates, carbon-based dielectric system almost dominates the development of non-magnetic MAMs. This review presents a comprehensive introduction on the recent advances of carbon-based dielectric system composed of carbon materials and other dielectric components, including metal oxides/carbon, metal sulfides/carbon, conductive polymers/carbon, carbides/carbon, carbon/carbon, and various ternary carbon-based dielectric composites. Thanks to the synergistic effects between different components and the elaborate microstructure design, these carbon-based dielectric composites can produce superior microwave absorption performance to traditional magnetic materials. Moreover, the challenges and prospects are also proposed to indicate some new insights for the further research of carbon-based dielectric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted from Ref. [62], Copyright: 2018 American Chemical Society. Used with permission

Figure 2

Adapted from Ref. [75], Copyright: 2020 Elsevier. Used with permission

Figure 3

Adapted from Ref. [93], Copyright: 2018 American Chemical Society. Used with permission. TEM image of WS2-RGO (e). RL maps of WS2-RGO (f), pure RGO (g), and pure WS2 nanosheets (h). Synergistic mechanisms responsible for the superior microwave absorption properties of WS2-RGO: electron hopping (i), interfacial polarization (j), dipole polarization (k), and multiple reflection and scattering of incident EM waves (l). Adapted from Ref. [97], Copyright: 2019 Springer. Used with permission

Figure 4

Adapted from Ref. [122], Copyright: 2019 American Chemical Society. Used with permission

Figure 5

Adapted from Ref. [127], Copyright: 2014 Royal Society of Chemistry. Used with permission

Figure 6

Adapted from Ref. [156], Copyright: 2018 Wiley. Used with permission

Figure 7

Adapted from Ref. [166], Copyright: 2018 American Chemical Society. Used with permission

Figure 8

Adapted from Ref. [177], Copyright: 2017 Elsevier. Used with permission

Figure 9

Adapted from Ref. [180], Copyright: 2016 Wiley. Used with permission

Figure 10

Adapted from Ref. [193], Copyright: 2020 American Chemical Society. Used with permission

Figure 11

Adapted from Ref. [194], Copyright: 2020 Wiley. Used with permission

Similar content being viewed by others

References

  1. Longair M (2015) ‘...a paper ...I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Phil Trans R Soc A 373:20140473

    Article  Google Scholar 

  2. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    Article  CAS  Google Scholar 

  3. Lv HL, Yang ZH, Wang PL, Ji GB, Song JZ, Zheng LR, Zeng HB, Xu ZJ (2018) A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv Mater 30:1706343

    Article  Google Scholar 

  4. Li Y, Liu XF, Nie XY, Yang WW, Wang YD, Yu RH, Shui JL (2019) Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 29:1807624

    Article  Google Scholar 

  5. Ji H, Zhao R, Zhang N, Jin CX, Lu XF, Wang C (2018) Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater 10:749–760

    Article  CAS  Google Scholar 

  6. Green M, Tian LH, Xiang P, Murowchick J, Tan XY, Chen XB (2018) Co2P nanoparticles for microwave absorption. Mater Today Nano 1:1–7

    Article  Google Scholar 

  7. Zhang Y, Yang ZH, Li M, Yang LJ, Liu JC, Ha Y, Wu RB (2020) Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem Eng J 382:123039

    Article  CAS  Google Scholar 

  8. Green M, Liu ZQ, Xiang P, Liu Y, Zhou MJ, Tan XY, Huang FQ, Liu L, Chen XB (2018) Doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci Appl 7:87

    Article  Google Scholar 

  9. Tian LH, Yan XD, Xu JL, Wallenmeyer P, Murowchick J, Liu L, Chen XB (2015) Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 3:12550–12556

    Article  CAS  Google Scholar 

  10. Green M, Tian LH, Xiang P, Murowchick J, Tan XY, Chen XB (2018) FeP nanoparticles: a new material for microwave absorption. Mater Chem Front 2:1119–1125

    Article  CAS  Google Scholar 

  11. Liu Y, Fu YW, Liu L, Li W, Guan JG, Tong GX (2018) Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl Mater Interfaces 10:16511–16520

    Article  CAS  Google Scholar 

  12. Liu DW, Du YC, Li ZN, Wang YH, Xu P, Zhao HH, Wang FY, Li CL, Han XJ (2018) Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J Mater Chem C 6:9615–9623

    Article  CAS  Google Scholar 

  13. Qiu X, Wang LX, Zhu HL, Guan YK, Zhang QT (2017) Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9:7408–7418

    Article  CAS  Google Scholar 

  14. Li XP, Deng ZM, Li Y, Zhang HB, Zhao S, Zhang Y, Wu XY, Yu ZZ (2019) Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 147:172–181

    Article  CAS  Google Scholar 

  15. Yang ZH, Zhang Y, Li M, Yang LJ, Liu JC, Hou Y, Yang Y (2019) Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl Nano Mater 2:7888–7897

    Article  CAS  Google Scholar 

  16. Wang X, Pan F, Xiang Z, Zeng QW, Pei K, Che RC, Lu W (2020) Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    Article  CAS  Google Scholar 

  17. Zhang WL, Zhang JM, Wu P, Chai GZ, Huang R, Ma F, Xu FF, Cheng HW, Chen YH, Ni X, Qiao L, Duan JL (2020) Parallel aligned nickel nanocone arrays for multi-band microwave absorption. ACS Appl Mater Interfaces 12:23340–23346

    Article  CAS  Google Scholar 

  18. Wang FY, Wang N, Han XJ, Liu DW, Wang YH, Cui LR, Xu P, Du YC (2019) Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145:701–711

    Article  CAS  Google Scholar 

  19. Kumar S, Arti KP, Singh N, Verma V (2019) Steady microwave absorption behavior of two-dimensional metal carbide MXene and polyaniline composite in X-band. J Magn Magn Mater 488:165364

    Article  CAS  Google Scholar 

  20. Cheng JB, Zhao HB, Cao M, Li ME, Zhang AN, Li SL, Wang YZ (2020) Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl Mater Interfaces 12:26301–26312

    Article  CAS  Google Scholar 

  21. Liang XH, Zhang XM, Liu W, Tang DM, Zhang BS, Ji GB (2016) A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J Mater Chem C 4:6816–6821

    Article  CAS  Google Scholar 

  22. Quan B, Shi WH, Ong SJH, Lu XC, Wang PL, Ji GB, Guo YF, Zheng LR, Xu ZCJ (2019) Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv Funct Mater 29:1901236

    Article  Google Scholar 

  23. Li G, Xie TS, Yang SL, Jin JH, Jiang JM (2012) Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys Chem C 116:9196–9201

    Article  CAS  Google Scholar 

  24. Chen C, Xi JB, Zhou EZ, Peng L, Chen ZC, Gao C (2018) Porous graphene microflowers for high-performance microwave absorption. Nano-micro Lett 10:26

    Article  Google Scholar 

  25. Zhang Z, Zhao HQ, Gu WH, Yang LJ, Zhang BS (2019) A biomass derived porous carbon for broadband and lightweight microwave absorption. Sci Rep 9:18617

    Article  CAS  Google Scholar 

  26. Wang BB, Fu QG, Song Q, Yu ZJ, Riedel R (2020) In situ growth of B4C nanowires on activated carbon felt to improve microwave absorption performance. Appl Phys Lett 116:203101

    Article  CAS  Google Scholar 

  27. Ning MQ, Man QK, Tan GG, Lei ZK, Li JB, Li RW (2020) Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: a case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl Mater Interfaces 12:20785–20796

    Article  CAS  Google Scholar 

  28. Green M, Liu Z, Smedley R, Nawaz H, Li X, Huang F, Chen XB (2018) Graphitic carbon nitride nanosheets for microwave absorption. Mater Today Phys 5:78–86

    Article  Google Scholar 

  29. Lin HR, Green M, Xu LJ, Chen XB, Ma BW (2019) Microwave absorption of organic metal halide nanotubes. Adv Mater Interfaces 7:1901270

    Article  Google Scholar 

  30. Green M, Liu Z, Xiang P, Tan X, Huang F, Liu L, Chen XB (2018) Ferric metal-organic framework for microwave absorption. Mater Today Chem 9:140–148

    Article  CAS  Google Scholar 

  31. Wen B, Cao MS, Hou ZL, Song WL, Zhang L, Lu MM, Jin HB, Fang XY, Wang WZ, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    Article  CAS  Google Scholar 

  32. Liu DW, Du YC, Xu P, Liu N, Wang YH, Zhao HH, Cui LR, Han XJ (2019) Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J Mater Chem C 7:5037–5046

    Article  CAS  Google Scholar 

  33. Cao MS, Han C, Wang XX, Zhang M, Zhang YL, Shu JC, Yang HJ, Fang XY, Yuan J (2018) Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J Mater Chem C 6:4586–4602

    Article  CAS  Google Scholar 

  34. Tian CH, Du YC, Xu P, Qiang R, Wang Y, Ding D, Xue JL, Ma J, Zhao HT, Han XJ (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS App Mater Interfaces 7:20090–20099

    Article  CAS  Google Scholar 

  35. Zhao HH, Xu XZ, Wang YH, Fan DG, Liu DW, Lin KF, Xu P, Han XJ, Du YC (2020) Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16:2003407

    Article  CAS  Google Scholar 

  36. Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933

    Article  CAS  Google Scholar 

  37. Zhao B, Zhao WY, Shao G, Fan BB, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7:12951–12960

    Article  CAS  Google Scholar 

  38. He S, Lu C, Wang GS, Wang JW, Guo HY, Guo L (2014) Synthesis and growth mechanism of white-fungus-like nickel sulfide microspheres, and their application in polymer composites with enhanced microwave-absorption properties. Chem Plus Chem 79:569–576

    CAS  Google Scholar 

  39. Xu DW, Yang S, Chen P, Yu Q, Xiong XH, Wang J (2019) Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146:301–312

    Article  CAS  Google Scholar 

  40. Lv HL, Zhang HQ, Zhao J, Ji GB, Du YW (2016) Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res 9:1813–1822

    Article  CAS  Google Scholar 

  41. Liu PJ, Ng VMH, Yao ZJ, Zhou JT, Lei YM, Yang ZH, Lv HL, Kong LB (2017) Facile synthesis and hierarchical assembly of flower-like NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl Mater Interfaces 9:16404–16416

    Article  CAS  Google Scholar 

  42. Green M, Chen XB (2019) Recent progress of nanomaterials for microwave absorption. J Materiomics 5:503–541

    Article  Google Scholar 

  43. Zeng XJ, Cheng XY, Yu RH, Stucky GD (2020) Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168:606–623

    Article  CAS  Google Scholar 

  44. Rao CNR (1989) Transition metal oxides. Annu Rev Phys Chem 40:291–326

    Article  CAS  Google Scholar 

  45. Green M, Van Tran AT, Smedley R, Roach A, Murowchick J, Chen XB (2019) Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater Sci 1:48–59

    Article  Google Scholar 

  46. Green M, Xiang P, Liu ZQ, Murowchick J, Tan XY, Huang FQ, Chen XB (2019) Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J Materiomics 5:133–146

    Article  Google Scholar 

  47. Wan J, Yao X, Gao X, Xiao X, Li TQ, Wu JB, Sun WM, Hu ZM, Yu HM, Huang L, Liu ML, Zhou J (2016) Microwave combustion for modification of transition metal oxides. Adv Funct Mater 26:7263–7270

    Article  CAS  Google Scholar 

  48. Green M, Li Y, Peng ZH, Chen XB (2020) Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. J Magn Magn Mater 497:165974

    Article  CAS  Google Scholar 

  49. Xia T, Zhang C, Oyler NA, Chen XB (2014) Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J Mater Res 29:2198–2210

    Article  CAS  Google Scholar 

  50. Xia T, Cao YH, Oyler NA, Murowchick J, Liu L, Chen XB (2015) Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl Mater Interfaces 7:10407–10413

    Article  CAS  Google Scholar 

  51. Yu WL, Li WW, Wu J, Sun J, Hu ZG, Chu JH (2011) Diversity of electronic transitions and photoluminescence properties in nanocrystalline Mn/Fe-doped tin dioxide semiconductor films: an effect from oxygen pressure. J Appl Phys 110:123502

    Article  Google Scholar 

  52. Tian LH, Xu JL, Just M, Green M, Liu L, Chen XB (2017) Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J Mater Chem C 5:4645–4653

    Article  CAS  Google Scholar 

  53. Dong JY, Ullal R, Han J, Wei SH, Ouyang X, Dong JZ, Gao W (2015) Partially crystallized TiO2 for microwave absorption. J Mater Chem A 3:5285–5288

    Article  CAS  Google Scholar 

  54. Cai M, Shui AZ, Wang X, He C, Qian JJ, Du B (2020) A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J Alloy Compd 842:155638

    Article  CAS  Google Scholar 

  55. Xia T, Zhang C, Oyler NA, Chen XB (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25:6905–6910

    Article  CAS  Google Scholar 

  56. He JZ, Zeng QC, Sun X, Shu JC, Wang XX, Cao MS (2019) Axiolitic ZnO rods wrapped with reduced graphene oxide: Fabrication, microstructure and highly efficient microwave absorption. Mater Lett 241:14–17

    Article  CAS  Google Scholar 

  57. Yuchang Q, Qinlong W, Fa L, Wancheng Z (2016) Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C 4:4853–4862

    Article  Google Scholar 

  58. Zhang X, Qiao J, Liu C, Wang FL, Jiang YY, Cui P, Wang Q, Wang Z, Wu LL, Liu JR (2020) A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg Chem Front 7:385–393

    Article  CAS  Google Scholar 

  59. Wan GP, Yu L, Peng XG, Wang GZ, Huang XQ, Zhao HN, Qin Y (2015) Preparation and microwave absorption properties of uniform TiO2@C core-shell nanocrystals. RSC Adv 5:77443–77448

    Article  CAS  Google Scholar 

  60. Dong S, Tang WK, Hu PT, Zhao XG, Zhang XH, Han JC, Hu P (2019) Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustainable Chem Eng 7:11795–11805

    Article  CAS  Google Scholar 

  61. Wu C, Chen ZF, Wang ML, Cao X, Zhang Y, Song P, Zhang TY, Ye XL, Yang Y, Gu WH, Zhou JD, Huang YZ (2020) Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16:2001686

    Article  CAS  Google Scholar 

  62. Duan YL, Xiao ZH, Yan XY, Gao ZF, Tang YS, Hou LQ, Li Q, Ning GQ, Li YF (2018) Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Appl Mater Interfaces 10:40078–40087

    Article  CAS  Google Scholar 

  63. Cui LR, Tian CH, Tang LL, Han XJ, Wang YH, Liu DW, Xu P, Li CL, Du YC (2019) Space-confined synthesis of core-shell BaTiO3@Carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl Mater Interfaces 11:31182–31190

    Article  CAS  Google Scholar 

  64. Mo ZC, Yang RL, Lu DW, Yang LL, Hu QM, Li HB, Zhu H, Tang ZK, Gui XC (2019) Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144:433–439

    Article  CAS  Google Scholar 

  65. Yang S, Guo X, Chen P, Xu DW, Qiu HF, Zhu XY (2019) Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption. J Alloy Compd 797:1310–1319

    Article  CAS  Google Scholar 

  66. Hu PT, Dong S, Li XT, Chen JM, Zhang XH, Hu P, Zhang SS (2019) A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties. J Mater Chem C 7:9219–9228

    Article  CAS  Google Scholar 

  67. Wu Y, Shu RW, Zhang JB, Sun RR, Chen YN, Yuan J (2019) Oxygen vacancy defects enhanced electromagnetic wave absorption properties of 3D net-like multi-walled carbon nanotubes/cerium oxide nanocomposites. J Alloy Compd 785:616–626

    Article  CAS  Google Scholar 

  68. Luo HL, Xiong GY, Yang ZW, Li QP, Ma CY, Li DY, Wu XB, Wang ZR, Wan YZ (2014) Facile preparation and extraordinary microwave absorption properties of carbon fibers coated with nanostructured crystalline SnO2. Mater Res Bull 53:123–131

    Article  CAS  Google Scholar 

  69. Wang L, Xing HL, Gao ST, Ji XL, Shen ZY (2017) Porous flower-like NiO@graphene composites with superior microwave absorption properties. J Mater Chem C 5:2005–2014

    Article  Google Scholar 

  70. Hu J, Shen Y, Xu LH, Liu YD (2020) Facile preparation of flower-like MnO2/reduced graphene oxide (RGO) nanocomposite and investigation of its microwave absorption performance. Chem Phys Lett 739:136953

    Article  CAS  Google Scholar 

  71. Gao X, Wang Y, Wang QG, Wu XM, Zhang WZ, Zong M, Zhang LJ (2019) Facile synthesis of a novel flower-like BiFeO3 microspheres/graphene with superior electromagnetic wave absorption performances. Ceram Int 45:3325–3332

    Article  CAS  Google Scholar 

  72. Gao SY, Wang Q, Lin Y, Yang HB, Wang L (2019) Flower-like Bi0.9La0.1FeO3 microspheres modified by reduced graphene oxide as a thin and strong electromagnetic wave absorber. J Alloy Compd 781:723–733

    Article  CAS  Google Scholar 

  73. Wu Y, Shu RW, Shan XM, Zhang JB, Shi JJ, Liu Y, Zheng MD (2020) Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J Alloy Compd 817:152766

    Article  CAS  Google Scholar 

  74. Baek K, Lee SY, Doh SG, Kim M, Hyun JK (2018) Axial oxygen vacancy-regulated microwave absorption in micron-sized tetragonal BaTiO3 particles. J Mater Chem C 6:9749–9755

    Article  CAS  Google Scholar 

  75. Jia ZR, Gao ZG, Kou KC, Feng AL, Zhang CH, Xu BH, Wu GL (2020) Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3-y/RGO for high efficiency microwave absorption. Compos Commun 20:100344

    Article  Google Scholar 

  76. Liu Y, Wu YX, Li KX, Wang J, Zhang CL, Ji JL, Wang WJ (2019) Amorphous SnS nanosheets/graphene oxide hybrid with efficient dielectric loss to improve the high-frequency electromagnetic wave absorption properties. Appl Surf Sci 486:344–353

    Article  CAS  Google Scholar 

  77. Zhang J, Huang GZ, Zeng JH, Jiang XD, Shi YX, Lin SJ, Chen X, Wang HB, Kong Z, Xi JH, Ji ZG (2019) SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities. J Alloy Compd 775:726–735

    Article  CAS  Google Scholar 

  78. Tao F, Green M, Tran ATV, Zhang YL, Yin YS, Chen XB (2019) Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl Nano Mater 2:3836–3847

    Article  CAS  Google Scholar 

  79. Lu MM, Wang XX, Cao WQ, Yuan J, Cao MS (2016) Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27:065702

    Article  Google Scholar 

  80. Huang TY, He M, Zhou YM, Pan WL, Li SW, Ding BB, Huang S, Tong Y (2017) Fabrication and microwave absorption of multiwalled carbon nanotubes anchored with CoS nanoplates. J Mater Sci 28:7622–7632

    CAS  Google Scholar 

  81. Zhao B, Shao G, Fan BB, Zhao WY, Xie YJ, Zhang R (2015) Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A 3:10345–10352

    Article  CAS  Google Scholar 

  82. Zhang XJ, Li S, Wang SW, Yin ZJ, Zhu JQ, Guo AP, Wang GS, Yin PG, Guo L (2016) Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J Phys Chem C 120:22019–22027

    Article  CAS  Google Scholar 

  83. Chen DZ, Quan HY, Wang GS, Guo L (2013) Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem 78:843–851

    Article  CAS  Google Scholar 

  84. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033

    Article  CAS  Google Scholar 

  85. Wang XX, Zhang WL, Ji XQ, Zhang BQ, Yu MX, Zhang W, Liu JQ (2016) 2D MoS2/graphene composites with excellent full Ku band microwave absorption. RSC Adv 6:106187–106193

    Article  CAS  Google Scholar 

  86. Xu XS, Tian XJ, Sun BT, Liang ZQ, Cui HZ, Tian J, Shao MH (2020) 1T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Appl Catal B: Environ 272:118984

    Article  CAS  Google Scholar 

  87. Piao MX, Chu J, Wang X, Chi Y, Zhang H, Li CL, Shi HF, Joo MK (2018) Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 29:025705

    Article  Google Scholar 

  88. Piao MX, Yang ZN, Liu F, Chu J, Wang X, Zhang H, Shi HF, Li CL (2020) Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber. J Alloy Compd 815:152335

    Article  CAS  Google Scholar 

  89. Guo HQ, Wang L, You WB, Yang LT, Li X, Chen GY, Zheng Chen Wu, Qian X, Wang M, Che RC (2020) Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl Mater Interfaces 12:16831–16840

    Article  CAS  Google Scholar 

  90. Tan HJ, Fan YM, Rong Y, Porter B, Lau CS, Zhou YQ, He ZY, Wang SS, Bhaskaran H, Warner JH (2016) Doping graphene transistors using vertical stacked monolayer WS2 heterostructures grown by chemical vapor deposition. ACS Appl Mater Interfaces 8:1644–1652

    Article  CAS  Google Scholar 

  91. Zhang ZY, Li WY, Yuen MF, Ng TW, Tang YB, Lee CS, Chen XF, Zhang WJ (2015) Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 18:196–204

    Article  CAS  Google Scholar 

  92. Zhang DQ, Wang HH, Cheng JY, Han CY, Yang XY, Xu JY, Shan GC, Zheng GP, Cao MS (2020) Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl Surf Sci 528:147052

    Article  CAS  Google Scholar 

  93. Liu LL, Zhang S, Yan F, Li CY, Zhu CL, Zhang XT, Chen YJ (2018) Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 10:14108–14115

    Article  CAS  Google Scholar 

  94. Ning MQ, Kuang BY, Hou ZL, Wang L, Li JB, Zhao YJ, Jin HB (2019) Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl Surf Sci 470:899–907

    Article  CAS  Google Scholar 

  95. Xiao Y, Peng ZY, Zhang S, Jiang YH, Jing X, Yang XY, Zhang JM, Ni L (2019) Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance. J Mater Sci 54:9573–9590

    Article  CAS  Google Scholar 

  96. Ye JJ, Qi L, Liu BB, Xu CX (2018) Facile preparation of hexagonal tin sulfide nanoplates anchored on graphene nanosheets for highly efficient sodium storage. J Colloid Interface Sci 513:188–197

    Article  CAS  Google Scholar 

  97. Zhang DQ, Liu TT, Cheng JY, Cao Q, Zheng GP, Liang S, Wang H, Cao MS (2019) Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett 11:38

    Article  CAS  Google Scholar 

  98. Wang C, Mu CP, Xiang JY, Wang BC, Zhang C, Song JF, Wen FS (2018) Microwave synthesized In2S3@CNTs with excellent properties in lithium-ion battery and electromagnetic wave absorption. Chin J Chem 36:157–161

    Article  Google Scholar 

  99. Wang YF, Chen DL, Yin X, Xu P, Wu F, He M (2015) Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7:26226–26234

    Article  CAS  Google Scholar 

  100. Liu C, Wang BC, Mu CP, Zhai K, Wen FS, Xiang JY, Nie AM, Liu ZY (2020) Enhanced microwave absorption properties of MnS2 microspheres interspersed with carbon nanotubes. J Magn Magn Mater 502:166432

    Article  CAS  Google Scholar 

  101. Huang TY, He M, Zhou YM, Li SW, Ding BB, Pan WL, Huang S, Tong Y (2017) Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high-performance microwave absorption. Synth Met 224:46–55

    Article  CAS  Google Scholar 

  102. Chai JX, Zhang DQ, Cheng JY, Jia YX, Ba XW, Gao Y, Zhu L, Wang H, Cao MS (2018) Facile synthesis of highly conductive MoS2/graphene nanohybrids with hetero-structures as excellent microwave absorbers. RSC Adv 8:36616–36624

    Article  CAS  Google Scholar 

  103. Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci 27:135–190

    Article  CAS  Google Scholar 

  104. Koh YN, Mokhtar N, Phang SW (2018) Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes. Polym Composite 39:1283–1291

    Article  CAS  Google Scholar 

  105. Green M, Tran ATV, Chen XB (2020) Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Comp Sci Technol 199:108332

    Article  CAS  Google Scholar 

  106. Chandrasekhar P, Naishadham K (1999) Broadband microwave absorption and shielding properties of a poly (aniline). Synth Met 105:115–120

    Article  CAS  Google Scholar 

  107. Green M, Tran ATV, Chen XB (2020) Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv Mater Interfaces 7:2000658

    Article  CAS  Google Scholar 

  108. Green M, Tran ATV, Chen XB (2020) Realizing maximum microwave absorption of Poly (3,4-ethylenedioxythiophene) with a data-driven method. ACS Appl Electron Mater 2:2937–2944

    Article  CAS  Google Scholar 

  109. Dong XL, Zhang XF, Huang H, Zuo F (2008) Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl Phys Lett 92:013127

    Article  Google Scholar 

  110. Sharma BK, Gupta AK, Khare N, Dhawan SK, Gupta HC (2009) Synthesis and characterization of polyaniline-ZnO composite and its dielectric behavior. Synth Met 159:391–395

    Article  CAS  Google Scholar 

  111. Ma JL, Ren HD, Liu ZY, Zhou J, Wang YQ, Hu B, Liu Y, Kong LB, Zhang TS (2020) Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. Compos Sci Technol 198:108239

    Article  CAS  Google Scholar 

  112. Rahal M, Atassi Y, Ali NN, Alghoraibi I (2020) Novel microwave absorbers based on polypyrrole and carbon quantum dots. Mater Chem Phys 255:123491

    Article  CAS  Google Scholar 

  113. Liu PB, Huang Y (2014) Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J Polym Res 21:430

    Article  Google Scholar 

  114. Singh SK, Akhtar MJ, Kar KK (2020) Synthesis of a lightweight nanocomposite based on polyaniline 3D hollow spheres integrated milled carbon fibers for efficient X-band microwave absorption. Ind Eng Chem Res 59:9076–9084

    Article  CAS  Google Scholar 

  115. Wu KH, Ting TH, Wang GP, Ho WD, Shih CC (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stabil 93:483–488

    Article  CAS  Google Scholar 

  116. Mahanta UJ, Gogoi JP, Borah D, Bhattacharyya NS (2019) Dielectric characterization and microwave absorption of expanded graphite integrated polyaniline multiphase nanocomposites in X-band. IEEE T Dielect El In 26:194–201

    Article  CAS  Google Scholar 

  117. Qiu H, Wang J, Qi SH, He Z, Fan X, Dong YQ (2014) Microwave absorbing properties of multi-walled carbon nanotubes/polyaniline nanocomposites. J Mater Sci 26:564–570

    Google Scholar 

  118. Sharma BK, Khare N, Sharma R, Dhawan SK, Vankar VD, Gupta HC (2009) Dielectric behavior of polyaniline-CNTs composite in microwave region. Compos Sci Technol 69:1932–1935

    Article  CAS  Google Scholar 

  119. Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190

    Article  CAS  Google Scholar 

  120. Zhang K, Xie AM, Wu F, Jiang WC, Wang MY, Dong W (2016) Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption. Mater Res Express 3:055008

    Article  Google Scholar 

  121. Bai XX, Hu XJ, Zhou SY, Li LF, Rohwerder M (2015) Controllable synthesis of leaflet-like poly (3,4-ethylenedioxythiophene)/single-walled carbon nanotube composites with microwave absorbing property. Compos Sci Technol 110:166–175

    Article  CAS  Google Scholar 

  122. Wang HG, Meng FB, Huang F, Jing CF, Li Y, Wei WW, Zhou ZW (2019) Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl Mater Interfaces 11:12142–12153

    Article  CAS  Google Scholar 

  123. Cheng JY, Zhao B, Zheng SY, Yang JH, Zhang DQ, Cao MS (2015) Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Appl Phys A 119:379–386

    Article  CAS  Google Scholar 

  124. Buzaglo M, Bar IP, Varenik M, Shunak L, Pevzner S, Regev O (2017) Graphite-to-graphene: total conversion. Adv Mater 29:1603528

    Article  Google Scholar 

  125. Duan YP, Liu J, Zhang YH, Wang TM (2016) First-principles calculations of graphene-based polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures. RSC Adv 6:73915–73923

    Article  CAS  Google Scholar 

  126. Yu HL, Wang TS, Wen B, Lu MM, Xu Z, Zhu CL, Chen YJ, Xue XY, Sun CW, Cao MS (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679

    Article  CAS  Google Scholar 

  127. Chen XN, Meng FC, Zhou ZW, Tian X, Shan LM, Zhu SB, Xu XL, Jiang M, Wang L, Hui D, Wang Y, Lu J, Gou JH (2014) One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6:8140–8148

    Article  CAS  Google Scholar 

  128. Liu J, Duan YP, Song LL, Zhang XF (2018) Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption. Org Electron 63:175–183

    Article  CAS  Google Scholar 

  129. Zhang X, Huang Y, Liu PB (2016) Enhanced electromagnetic wave absorption properties of poly(3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett 8:131–136

    Article  Google Scholar 

  130. Wang Y, Du YC, Wu B, Han BH, Dong SM, Han XJ, Xu P (2018) Fabrication of PPy nanosphere/rGO composites via a facile self-assembly strategy for durable microwave absorption. Polymers 10:998

    Article  Google Scholar 

  131. Wu F, Wang Y, Wang MY (2014) Using organic solvent absorption as a self-assembly method to synthesize three-dimensional (3D) reduced graphene oxide (RGO)/poly(3,4-ethylenedioxythiophene) (PEDOT) architecture and its electromagnetic absorption properties. RSC Adv 4:49780–49782

    Article  CAS  Google Scholar 

  132. Li X, Yu LM, Zhao WK, Shi YY, Yu LJ, Dong YB, Zhu YF, Fu YQ, Liu XD, Fu FY (2020) Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379:122393

    Article  CAS  Google Scholar 

  133. Liu J, Wang ZZ, Rehman SU, Bi H (2017) Uniform core-shell PPy@carbon microsphere composites with a tunable shell thickness: the synthesis and their excellent microwave absorption performances in the X-band. RSC Adv 7:53104–53110

    Article  CAS  Google Scholar 

  134. Chen XN, Chen JJ, Meng FB, Shan LM, Jiang M, Xu XL, Lu J, Wang Y, Zhou ZW (2016) Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos Sci Technol 127:71–78

    Article  CAS  Google Scholar 

  135. Wang Y, Wu XM, Zhang WZ (2016) Synthesis and high-performance microwave absorption of graphene foam/polyaniline nanorods. Mater Lett 165:71–74

    Article  CAS  Google Scholar 

  136. Wang P, Cheng LF, Zhang YN, Yuan WY, Pan HX, Wu H (2018) Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Compos Part A 104:68–80

    Article  CAS  Google Scholar 

  137. Dong S, Zhang WZ, Zhang XH, Hu P, Han JC (2018) Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem Eng J 354:767–776

    Article  CAS  Google Scholar 

  138. Ma MD, Yang RL, Zhang C, Wang BC, Zhao ZS, Hu WT, Liu ZY, Yu DL, Wen FS, He JL, Tian YJ (2019) Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. Carbon 148:504–511

    Article  CAS  Google Scholar 

  139. Liu XX, Zhang ZY, Wu YP (2011) Absorption properties of carbon black/silicon carbide microwave absorbers. Compos Part B: Eng 42:326–329

    Article  CAS  Google Scholar 

  140. Zhao JM, An WX, Li DA, Yang XL (2011) Synthesis and microwave absorption properties of SiC-carbon fibers composite in S and C band. Synth Met 161:2144–2148

    Article  CAS  Google Scholar 

  141. Baskey HB, Singh SK, Akhtar MJ, Kar KK (2017) Investigation on the dielectric properties of exfoliated graphite-silicon carbide nanocomposites and their absorbing capability for the microwave radiation. IEEE T Nanotechnol 16:453–461

    Article  CAS  Google Scholar 

  142. Xiao SS, Mei H, Han DY, Dassios KG, Cheng LF (2017) Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 122:718–725

    Article  CAS  Google Scholar 

  143. Li WC, Li CS, Lin LH, Wang Y, Zhang JS (2019) Foam structure to improve microwave absorption properties of silicon carbide/carbon material. J Mater Sci Technol 35:2658–2664

    Article  Google Scholar 

  144. Ye XL, Chen ZF, Li M, Wang TM, Wu C, Zhang JX, Zhou QB, Liu HZ, Cui S (2019) Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment. ACS Sustainable Chem Eng 7:18395–18404

    Article  CAS  Google Scholar 

  145. Li BB, Mao BX, Wang XB, He T, Huang HQ (2020) Novel, hierarchical SiC nanowire-reinforced SiC/carbon foam composites: Lightweight, ultrathin, and highly efficient microwave absorbers. J Alloy Compd 829:154609

    Article  CAS  Google Scholar 

  146. Yun T, Kim H, Iqbal A, Cho YS, Lee GS, Kim MK, Kim SJ, Kim D, Gogotsi Y, Kim SO, Koo CM (2020) Electromagnetic shielding of monolayer MXene assemblies. Adv Mater 32:1906769

    Article  CAS  Google Scholar 

  147. Jhon YI, Koo J, Anasori B, Seo M, Lee JH, Gogotsi Y, Jhon YM (2017) Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater 29:1702496

    Article  Google Scholar 

  148. Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater 32:3480–3488

    Article  CAS  Google Scholar 

  149. Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J (2019) 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302

    Article  CAS  Google Scholar 

  150. Iqbal A, Shahzad F, Hantanasirisakul K, Kim MK, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo CM (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369:446–450

    Article  CAS  Google Scholar 

  151. Qing YC, Nan HY, Luo F, Zhou WC (2017) Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv 7:27755–27761

    Article  CAS  Google Scholar 

  152. Ma WL, Chen HH, Hou SY, Huang ZY, Huang Y, Xu ST, Fan F, Chen YS (2019) Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl Mater Interfaces 11:25369–25377

    Article  CAS  Google Scholar 

  153. Dai BZ, Zhao B, Xie X, Su TT, Fan BB, Zhang R, Yang R (2018) Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J Mater Chem C 6:5690–5697

    Article  CAS  Google Scholar 

  154. Li XL, Yin XW, Han MK, Song CQ, Xu HL, Hou ZX, Zhang LT, Cheng LF (2017) Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5:4068–4074

    Article  CAS  Google Scholar 

  155. Han MK, Yin XW, Li XL, Anasori B, Zhang LT, Cheng LF, Gogotsi Y (2017) Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl Mater Interfaces 9:20038–20045

    Article  CAS  Google Scholar 

  156. Li XL, Yin XW, Song CQ, Han MK, Xu HL, Duan WY, Cheng LF, Zhang LT (2018) Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater 28:1803938

    Article  Google Scholar 

  157. Li Y, Meng FB, Mei Y, Wang HG, Guo YF, Wang Y, Peng FX, Huang F, Zhou ZW (2020) Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem Eng J 391:123512

    Article  CAS  Google Scholar 

  158. Wang LB, Liu H, Lv XL, Cui GZ, Gu GX (2020) Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J Alloy Comp 828:154251

    Article  CAS  Google Scholar 

  159. Zhan JM, Jian WR, Tang XC, Han YL, Li WH, Yao XH, Meng LY (2019) Tensile deformation of nanocrystalline Al-matrix composites: Effects of the SiC particle and graphene. Comp Mater Sci 156:187–194

    Article  CAS  Google Scholar 

  160. Zou JP, Wang ZZ, Yan MQ, Bi H (2014) Enhanced interfacial polarization relaxation effect on microwave absorption properties of submicron-sized hollow Fe3O4 hemispheres. J Phys D: Appl Phys 47:275001

    Article  Google Scholar 

  161. Bokhonov B, Borisova Y, Korchagin M (2004) Formation of encapsulated molybdenum carbide particles by annealing mechanically activated mixtures of amorphous carbon with molybdenum. Carbon 42:2067–2071

    Article  CAS  Google Scholar 

  162. Fan XJ, Liu YY, Peng ZW, Zhang ZH, Zhou HQ, Zhang XM, Yakobson BI, Goddard WA, Guo X, Hauge RH, Tour JM (2017) Atomic H-induced Mo2C hybrid as an active and stable bifunctional electrocatalyst. ACS Nano 11:384–394

    Article  CAS  Google Scholar 

  163. Li XP, Li ZQ, Que LK, Ma YJ, Zhu L, Pei CH (2020) Electromagnetic wave absorption performance of graphene/SiC nanowires based on graphene oxide. J Alloy Compd 835:155172

    Article  CAS  Google Scholar 

  164. Wang YH, Han XJ, Xu P, Liu DW, Cui LR, Zhao HH, Du YC (2019) Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem Eng J 372:312–320

    Article  CAS  Google Scholar 

  165. Dai SS, Cheng Y, Quan B, Liang XH, Liu W, Yang ZH, Ji GB, Du YW (2018) Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale 10:6945–6953

    Article  CAS  Google Scholar 

  166. Wang YH, Li CL, Han XJ, Liu DW, Zhao HH, Li ZN, Xu P, Du YC (2018) Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave Absorption. ACS Appl Nano Mater 1:5366–5376

    Article  CAS  Google Scholar 

  167. Lian YL, Han BH, Liu DW, Wang YH, Zhao HH, Xu P, Han XJ, Du YC (2020) Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett 12:153

    Article  CAS  Google Scholar 

  168. Behtash M, Nazir S, Wang YQ, Yang K (2016) Polarization effects on the interfacial conductivity in LaAlO3/SrTiO3 heterostructures: a first-principles study. Phys Chem Chem Phys 18:6831–6838

    Article  CAS  Google Scholar 

  169. Sun Y, Sun YG (2020) Precursor infiltration and pyrolysis cycle-dependent mechanical and microwave absorption performances of continuous carbon fibers-reinforced boron-containing phenolic resins for low-density carbon-carbon composites. Ceram Int 46:15167–15175

    Article  CAS  Google Scholar 

  170. Xu HL, Yin XW, Zhu M, Li MH, Zhang H, Wei HJ, Zhang LT, Cheng LF (2019) Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142:346–353

    Article  CAS  Google Scholar 

  171. Singh SK, Akhtar MJ, Kar KK (2018) Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl Mater Interfaces 10:24816–24828

    Article  CAS  Google Scholar 

  172. Zhang T, Xiao B, Zhou PY, Xia L, Wen GW, Zhang HB (2017) Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 28:355708

    Article  Google Scholar 

  173. Zhao JG, Xing BY, Yang H, Pan QL, Li ZP, Liu ZJ (2016) Growth of carbon nanotubes on graphene by chemical vapor deposition. New Carbon Mater 31:31–36

    Article  CAS  Google Scholar 

  174. Tang J, Bi S, Wang X, Hou GL, Su XJ, Liu CH, Lin YY, Li H (2019) Excellent microwave absorption of carbon black/reduced graphene oxide composite with low loading. J Mater Sci 54:13990–14001

    Article  CAS  Google Scholar 

  175. Zhang XX, Wang J, Su XG, Huo SQ (2019) Facile synthesis of reduced graphene oxide-wrapped CNFs with controllable chemical reduction degree for enhanced microwave absorption performance. J Colloid Interface Sci 553:402–408

    Article  CAS  Google Scholar 

  176. Lv HL, Li Y, Jia ZR, Wang LJ, Guo XQ, Zhao B, Zhang R (2020) Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos Part B 196:108122

    Article  CAS  Google Scholar 

  177. Chen HH, Huang ZY, Huang Y, Zhang Y, Ge Z, Qin B, Liu ZF, Shi Q, Xiao PS, Yang Y, Zhang TF, Chen YS (2017) Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124:506–514

    Article  CAS  Google Scholar 

  178. Qi YJ, Wei DC, Shi GM, Zhang M, Qi Y (2019) Amorphous/nanocrystalline carbonized hydrochars with isomeric heterogeneous interfacial polarizations for high-performance microwave absorption. Sci Rep 9:12429

    Article  Google Scholar 

  179. Li MH, Fan XM, Xu HL, Ye F, Xue JM, Li XQ, Cheng LF (2020) Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. J Mater Sci Technol 59:164–172

    Article  Google Scholar 

  180. Wang Y, Du YC, Qiang R, Tian CH, Xu P, Han XJ (2016) Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv Mater Interfaces 3:1500684

    Article  Google Scholar 

  181. Zhao HH, Han XJ, Li ZN, Liu DW, Wang YH, Wang Y, Zhou W, Du YC (2018) Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J Colloid Interface Sci 528:174–183

    Article  CAS  Google Scholar 

  182. Qiang R, Du YC, Wang Y, Wang N, Tian CH, Ma J, Xu P, Han XJ (2016) Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98:599–606

    Article  CAS  Google Scholar 

  183. Zhao J, Lu YJ, Ye WL, Wang L, Liu B, Lv SS, Chen LX, Gu JW (2019) Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure. Ceram Int 45:20282–20289

    Article  CAS  Google Scholar 

  184. Thi QV, Lim S, Jang E, Kim J, Van Khoi N, Tung NT, Sohn D (2020) Silica particles wrapped with poly(aniline-co-pyrrole) and reduced graphene oxide for advanced microwave absorption. Mater Chem Phys 244:122691

    Article  CAS  Google Scholar 

  185. Chen XN, Zhou JX, Zhang Y, Zhu SB, Tian X, Meng FC, Cui LY, Xue PH, Huang RX, Sun JC (2019) Polydopamine-modified polyaniline/nanodiamond ternary hybrids with brain fold-like surface for enhanced dual band electromagnetic absorption. ACS Appl Polym Mater 1:405–413

    Article  CAS  Google Scholar 

  186. Zhao J, Zhang JL, Wang L, Lyu SS, Ye WL, Xu BB, Qiu H, Chen LX, Gu JW (2020) Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos Part A 129:105714

    Article  CAS  Google Scholar 

  187. Zhang Z, Lv Q, Chen YW, Yu HT, Liu H, Cui GZ, Sun XD, Li L (2019) NiS2@rGO nanosheet wrapped with PPy aerogel: a sandwich-like structured composite for excellent microwave absorption. Nanomaterials 9:833

    Article  CAS  Google Scholar 

  188. Hu Q, Fang Y, Wang JJ, Du Z, Song QQ, Guo ZL, Huang Y, Lin J, Tang CC (2019) Novel hierarchical RGO/MoS2/K-αMnO2 composite architectures with enhanced broadband microwave absorption performance. J Mater Chem C 7:13878–13886

    Article  CAS  Google Scholar 

  189. Wu Y, Shu RW, Zhang JB, Wan ZL, Shi JJ, Liu Y, Zhao GM, Zheng MD (2020) Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/cerium oxide ternary nanocomposite. J Alloy Compd 819:152944

    Article  CAS  Google Scholar 

  190. Lai YY, Lv LZ, Fu HQ (2020) Preparation and study of Al2O3@PPy@rGO composites with microwave absorption properties. J Alloy Compd 832:152957

    Article  CAS  Google Scholar 

  191. Wang JX, Yang JF, Yang J, Zhang H (2020) Design of novel CNT/RGO/ZIF-8 ternary hybrid structure for lightweight and highly effective microwave absorption. Nanotechnology 31:414001

    Article  CAS  Google Scholar 

  192. Ren FY, Xue JM, Liu XL, Cheng LF (2020) In situ construction of CNWs/SiC-NWs hybrid network reinforced SiCN with excellent electromagnetic wave absorption properties in X band. Carbon 168:278–289

    Article  CAS  Google Scholar 

  193. Xu C, Wu F, Duan LQ, Xiong ZM, Xia YL, Yang ZQ, Sun MX, Xie AM (2020) Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl Electron Mater 2:1505–1513

    Article  CAS  Google Scholar 

  194. Wang JQ, Liu L, Jiao SL, Ma KJ, Lv J, Yang JJ (2020) Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv Funct Mater 30:2002595

    Article  CAS  Google Scholar 

  195. Liu PB, Zhu CY, Gao S, Guan C, Huang Y, He WJ (2020) N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163:348–359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the financial support from Natural Science Foundation of China (21676065 and 21776053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijiang Han or Yunchen Du.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Han, X., Wang, F. et al. A review on recent advances in carbon-based dielectric system for microwave absorption. J Mater Sci 56, 10782–10811 (2021). https://doi.org/10.1007/s10853-021-05941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05941-y

Navigation