Skip to main content
Log in

Investigation on microstructure and localized corrosion behavior in the stir zone of dissimilar friction-stir-welded AA2024/7075 joint

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is an effective welding technique to realize the joining of dissimilar aluminum alloys. The microstructural heterogeneities induced by FSW across the joints could have curial implication for the corrosion performance of the joints. In this research, the microstructure and localized corrosion behavior of shoulder interface zone (SIZ), vortex zone (VZ), bottom zone (BZ) and bottom interface zone (BIZ) in the stir zone (SZ) of dissimilar FSW AA2024/AA7075 joint was systematically investigated through detailed microstructural characterization and relevant corrosion tests. The results indicated that plentiful of Cu-rich constituent particles are formed on AA2024 side and the areas near the interface on both sides, and corrosion originates from these regions. Grain size has little influence on corrosion behavior of the SZ, while the local regions with higher stored energy are more sensitive and liable to corrosion. The sequence of mixing degree of materials in the four regions of the SZ is: BZ > VZ > SIZ > BIZ, which is in contrast to the order of corrosion rate. Galvanic corrosion is detected in the SIZ and BIZ, and sufficient mixing of materials significantly weakens the galvanic corrosion, resulting in higher corrosion resistance in the BZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871

    CAS  Google Scholar 

  2. Rioja RJ, Liu J (2012) The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A 43:3325–3337

    CAS  Google Scholar 

  3. Texier D, Atmani F, Bocher P, Nadeau F, Chen J, Zedan Y et al (2018) Fatigue performances of FSW and GMAW aluminum alloys welded joints: competition between microstructural and structural-contact-fretting crack initiation. Int J Fatigue 116:220–233

    CAS  Google Scholar 

  4. Wang G, Zhao Y, Hao Y (2018) Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol 34:73–91

    CAS  Google Scholar 

  5. Padhy G, Wu C, Gao S (2018) Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34:1–38

    Google Scholar 

  6. Kartsonakis I, Dragatogiannis D, Koumoulos E, Karantonis A, Charitidis C (2016) Corrosion behaviour of dissimilar friction stir welded aluminium alloys reinforced with nanoadditives. Mater Des 102:56–67

    CAS  Google Scholar 

  7. Zhang C, Huang G, Cao Y, Zhu Y, Liu Q (2019) On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: effect of rotational speed. J Manuf Process 37:470–487

    Google Scholar 

  8. Khan NZ, Siddiquee AN, Khan ZA, Mukhopadhyay AK (2017) Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J Alloys Compd 695:2902–2908

    CAS  Google Scholar 

  9. Tang J, Shen Y (2016) Numerical simulation and experimental investigation of friction stir lap welding between aluminum alloys AA2024 and AA7075. J Alloys Compd 666:493–500

    CAS  Google Scholar 

  10. Mishra RS, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Google Scholar 

  11. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding–process, weldment structure and properties. Prog Mater Sci 53:980–1023

    CAS  Google Scholar 

  12. Donatus U, Thompson G, Zhou X, Wang J, Cassell A, Beamish K (2015) Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys. Mater Charact 107:85–97

    CAS  Google Scholar 

  13. Li X, Li J, Liao Z, Jin F, Zhang F, Xiong J (2016) Asymmetric microstructure and fracture behaviour of friction stir welded joints of 2024 aluminium alloy under cyclical load. Sci Technol Weld Join 21:515–522

    CAS  Google Scholar 

  14. Sahu PK, Pal S (2017) Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. J Mater Process Technol 243:442–455

    CAS  Google Scholar 

  15. Sharghi E, Farzadi A (2018) Simulation of strain rate, material flow, and nugget shape during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite. J Alloys Compd 748:953–960

    CAS  Google Scholar 

  16. Chenghang Z, Guangjie H, Yu C, Wei L, Qing L (2019) EBSD analysis of nugget zone in dissimilar friction stir welded AA2024-AA7075 joint along weld thickness. Rare Metal Mat Eng 48:3161–3166

    Google Scholar 

  17. Zhang C, Huang G, Cao Y, Zhu Y, Huang X, Zhou Y et al (2020) Microstructure evolution of thermo-mechanically affected zone in dissimilar AA2024/7075 joint produced by friction stir welding. Vacuum 179:109515

    CAS  Google Scholar 

  18. Threadgill P, Leonard A, Shercliff H, Withers P (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54:49–93

    CAS  Google Scholar 

  19. Zhang C, Cui L, Wang D, Liu Y, Liu C, Li H (2019) The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5 W heat resistant steel. Scr Mater 158:6–10

    CAS  Google Scholar 

  20. Zhang C, Cao Y, Huang G, Zeng Q, Zhu Y, Huang X et al (2020) Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding. J Manuf Process 49:214–226

    Google Scholar 

  21. Paglia C, Jata K, Buchheit R (2006) A cast 7050 friction stir weld with scandium: microstructure, corrosion and environmental assisted cracking. Mater Sci Eng A 424:196–204

    Google Scholar 

  22. Paglia C, Buchheit R (2008) A look in the corrosion of aluminum alloy friction stir welds. Scr Mater 58:383–387

    CAS  Google Scholar 

  23. Lumsden J, Mahoney M, Rhodes C, Pollock G (2003) Corrosion behavior of friction-stir-welded AA7050-T7651. Corrosion 59:212–219

    CAS  Google Scholar 

  24. Bousquet E, Poulon-Quintin A, Puiggali M, Devos O, Touzet M (2011) Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corros Sci 53:3026–3034

    CAS  Google Scholar 

  25. Paglia C, Buchheit R (2008) The time–temperature–corrosion susceptibility in a 7050-T7451 friction stir weld. Mater Sci Eng, A 492:250–254

    Google Scholar 

  26. Kang J, Fu R-d, Luan G-h, Dong C-l, He M (2010) In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy. Corros Sci 52:620–626

    CAS  Google Scholar 

  27. Strass B, Wagner G, Conrad C, Wolter B, Benfer S, Fuerbeth W (2014) Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding-mechanical properties, microstructure and corrosion behavior. Adv Mater Res Trans Tech Publ 966–967:521–535

    Google Scholar 

  28. Akinlabi ET, Andrews A, Akinlabi SA (2014) Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Trans Nonferr Metal Soc 24:1323–1330

    CAS  Google Scholar 

  29. Sarvghad-Moghaddam M, Parvizi R, Davoodi A, Haddad-Sabzevar M, Imani A (2014) Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corros Sci 79:148–158

    CAS  Google Scholar 

  30. Rajani HZ, Esmaeili A, Mohammadi M, Sharbati M, Givi M (2012) The role of metal-matrix composite development during friction stir welding of aluminum to brass in weld characteristics. J Mater Eng Perform 21:2429–2437

    Google Scholar 

  31. Seo B, Song KH, Park K (2018) Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met Mater Int 24:1232–1240

    CAS  Google Scholar 

  32. Larson D, Waldera B, Sitter C, Kalita S (2011) Microstructure and corrosion investigation of friction stir welds of dissimilar aluminum alloys. Mater Sci Technol Conf Exhib 12:1546–1553

    Google Scholar 

  33. Shen C, Zhang J, Ge J (2011) Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld. J Environ Sci 23:S32–S35

    Google Scholar 

  34. Bertoncello JC, Manhabosco SM, Dick LF (2015) Corrosion study of the friction stir lap joint of AA7050-T76511 on AA2024-T3 using the scanning vibrating electrode technique. Corros Sci 94:359–367

    CAS  Google Scholar 

  35. De Abreu CP, Costa I, De Melo HG, Pébère N, Tribollet B, Vivier V (2017) Multiscale Electrochemical Study of Welded Al Alloys Joined by Friction Stir Welding. J Electrochem Soc 164:C735–C746

    Google Scholar 

  36. Davoodi A, Esfahani Z, Sarvghad M (2016) Microstructure and corrosion characterization of the interfacial region in dissimilar friction stir welded AA5083 to AA7023. Corros Sci 107:133–144

    CAS  Google Scholar 

  37. Fattah-alhosseini A, Naseri M, Gholami D, Imantalab O, Attarzadeh F, Keshavarz M (2019) Microstructure and corrosion characterization of the nugget region in dissimilar friction-stir-welded AA5083 and AA1050. J Mater Sci 54:777–790. https://doi.org/10.1007/s10853-018-2820-4

    Article  CAS  Google Scholar 

  38. Zhao Z, Liang H, Zhao Y, Yan K (2018) Effect of exchanging advancing and retreating side materials on mechanical properties and electrochemical corrosion resistance of Dissimilar 6013-T4 and 7003 aluminum alloys FSW joints. J Mater Eng Perform 27:1777–1783

    CAS  Google Scholar 

  39. Wu P, Deng Y, Fan S, Ji H, Zhang X (2018) A study on dissimilar friction stir welded between the Al–Li–Cu and the Al–Zn–Mg–Cu alloys. Materials 11:1132

    Google Scholar 

  40. Bocchi S, Cabrini M, D’Urso G, Giardini C, Lorenzi S, Pastore T (2018) The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints. J Manuf Process 35:1–15

    Google Scholar 

  41. Niu P, Li W, Li N, Xu Y, Chen D (2019) Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys. Mater Charact 147:93–100

    CAS  Google Scholar 

  42. Zhang C, Huang G, Cao Y, Wu X, Huang X, Liu Q (2019) Optimization of Tensile and Corrosion Properties of Dissimilar Friction Stir Welded AA2024-7075 Joints. J Mater Eng Perform 28:183–199

    CAS  Google Scholar 

  43. Galvão I, Leal R, Rodrigues D, Loureiro A (2013) Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Technol 213:129–135

    Google Scholar 

  44. Zhang C, Huang G, Cao Y, Zhu Y, Li W, Wang X et al (2019) Microstructure and mechanical properties of dissimilar friction stir welded AA2024-7075 joints: Influence of joining material direction. Mater Sci Eng A 766:138368

    CAS  Google Scholar 

  45. Sutton MA, Yang B, Reynolds AP, Yan J (2004) Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds: part II. Mechanical characterization. Mater Sci Eng A 364:66–74

    Google Scholar 

  46. Tongne A, Desrayaud C, Jahazi M, Feulvarch E (2017) On material flow in friction stir welded Al alloys. J Mater Process Technol 239:284–296

    CAS  Google Scholar 

  47. Buchheit R, Grant R, Hlava P, McKenzie B, Zender G (1997) Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024‐T3. J Electrochem Soc 144:2621–2628

    CAS  Google Scholar 

  48. Dziallach S, Bleck W, Köhler M, Nicolini G, Richter S (2009) Roll-bonded titanium/stainless-steel couples, part 1: diffusion and interface-layer investigations. Adv Eng Mater 11:75–81

    CAS  Google Scholar 

  49. Martinez N, Kumar N, Mishra R, Doherty K (2017) Microstructural variation due to heat gradient of a thick friction stir welded aluminum 7449 alloy. J Alloys Compd 713:51–63

    CAS  Google Scholar 

  50. Sha G, Marceau R, Gao X, Muddle B, Ringer S (2011) Nanostructure of aluminium alloy 2024: segregation, clustering and precipitation processes. Acta Mater 59:1659–1670

    CAS  Google Scholar 

  51. Wang S, Starink M (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215

    Google Scholar 

  52. Ghosh A, Ghosh M, Shankar G (2018) On the role of precipitates in controlling microstructure and mechanical properties of Ag and Sn added 7075 alloys during artificial ageing. Mater Sci Eng A 738:399–411

    CAS  Google Scholar 

  53. Wolverton C (2001) Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater 49:3129–3142

    CAS  Google Scholar 

  54. Tanaka T, Nezu M, Uchida S, Hirata T (2020) Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel. J Mater Sci 55:3064–3072. https://doi.org/10.1007/s10853-019-04106-2

    Article  CAS  Google Scholar 

  55. Ross K, Reza-E-Rabby M, McDonnell M, Whalen SA (2019) Advances in dissimilar metals joining through temperature control of friction stir welding. MRS Bull 44:613–618

    Google Scholar 

  56. Pereira VF, Fonseca EB, Costa AM, Bettini J, Lopes ES (2020) Nanocrystalline structural layer acts as interfacial bond in Ti/Al dissimilar joints produced by friction stir welding in power control mode. Scr Mater 174:80–86

    CAS  Google Scholar 

  57. Gotawala N, Shrivastava A (2019) Investigation of interfacial diffusion during dissimilar friction stir welding. Friction stir welding and processing X. Springer, New York, pp 109–119

    Google Scholar 

  58. Gollapudi S (2012) Grain size distribution effects on the corrosion behaviour of materials. Corros Sci 62:90–94

    CAS  Google Scholar 

  59. Zhang X, Zhou X, Hashimoto T, Lindsay J, Ciuca O, Luo C et al (2017) The influence of grain structure on the corrosion behaviour of 2A97-T3 Al-Cu-Li alloy. Corros Sci 116:14–21

    CAS  Google Scholar 

  60. Liu Q, Jensen DJ, Hansen N (1998) Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater 46:5819–5838

    CAS  Google Scholar 

  61. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746

    Google Scholar 

  62. Ma Z, Feng A, Chen D, Shen J (2018) Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit Rev Solid State 43:269–333

    CAS  Google Scholar 

  63. Cam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23:1936–1953

    CAS  Google Scholar 

  64. Dimitrov N, Mann J, Sieradzki K (1999) Copper redistribution during corrosion of aluminum alloys. J Electrochem Soc 146:98–102

    CAS  Google Scholar 

  65. de Sousa Araujo JV, Donatus U, Queiroz FM, Terada M, Milagre MX, de Alencar MC et al (2018) On the severe localized corrosion susceptibility of the AA2198-T851 alloy. Corros Sci 133:132–140

    Google Scholar 

  66. Meng G, Li Y, Shao Y, Zhang T, Wang Y, Wang F et al (2016) Effect of microstructures on corrosion behavior of nickel coatings:(II) competitive effect of grain size and twins density on corrosion behavior. J Mater Sci Technol 32:465–469

    CAS  Google Scholar 

  67. Trdan U, Grum J (2014) SEM/EDS characterization of laser shock peening effect on localized corrosion of Al alloy in a near natural chloride environment. Corros Sci 82:328–338

    CAS  Google Scholar 

  68. Sinhmar S, Dwivedi DK (2018) A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminium alloy. Corros Sci 133:25–35

    CAS  Google Scholar 

  69. Park S-M, Yoo J-S (2003) Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. ACS Publications, Washington

    Google Scholar 

  70. Nam N, Dai L, Mathesh M, Bian M, Thu V (2016) Role of friction stir welding–traveling speed in enhancing the corrosion resistance of aluminum alloy. Mater Chem Phys 173:7–11

    CAS  Google Scholar 

  71. Escrivà-Cerdán C, Blasco-Tamarit E, García-García DM, García-Antón J, Akid R, Walton J (2013) Effect of temperature on passive film formation of UNS N08031 Cr–Ni alloy in phosphoric acid contaminated with different aggressive anions. Electrochim Acta 111:552–561

    Google Scholar 

  72. Wang Z, Chen C, Jiu J, Nagao S, Nogi M, Koga H et al (2017) Electrochemical behavior of Zn-xSn high-temperature solder alloys in 0.5 M NaCl solution. J Alloys Compd 716:231–239

    CAS  Google Scholar 

  73. Hu T, Shi H, Hou D, Wei T, Fan S, Liu F et al (2019) A localized approach to study corrosion inhibition of intermetallic phases of AA 2024-T3 by cerium malate. Appl Surf Sci 467:1011–1032

    Google Scholar 

  74. Ma Y, Zhou X, Liao Y, Yi Y, Wu H, Wang Z et al (2016) Localised corrosion in AA 2099-T83 aluminium-lithium alloy: the role of grain orientation. Corros Sci 107:41–48

    CAS  Google Scholar 

  75. Schneider M, Kremmer K, Lämmel C, Sempf K, Herrmann M (2014) Galvanic corrosion of metal/ceramic coupling. Corros Sci 80:191–196

    CAS  Google Scholar 

  76. Won S, Seo B, Park JM, Kim HK, Song KH, Min S-H et al (2018) Corrosion behaviors of friction welded dissimilar aluminum alloys. Mater Charact 144:652–660

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support of the “National Natural Science Foundation of China” (No. 51421001) and “Fundamental Research Funds for the Central Universities” (No. 2018CDJDCL0019). We also acknowledge the Electron Microscopy Center of Chongqing University for providing SEM and TEM test channel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, G., Cao, Y. et al. Investigation on microstructure and localized corrosion behavior in the stir zone of dissimilar friction-stir-welded AA2024/7075 joint. J Mater Sci 55, 15005–15032 (2020). https://doi.org/10.1007/s10853-020-05072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05072-w

Navigation