Skip to main content
Log in

Synthesis and structural characterization of MoS2 micropyramids

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials based on molybdenum sulfide (MoS2) have shown promising applications in semiconductors, optoelectronics, and catalysis. The variety of applications implies a controlled manipulation of purity, shape, and phase of such materials. This work elaborates on the structural characterization of MoS2 micro-assemblies produced in a chemical vapor deposition (CVD) system with emphasis on the pyramidal structures formed at high temperature and low gas rate, on a silicon dioxide (SiO2) substrate. A precise control of temperature and gas rate in the CVD process prompts the growth of pyramidal and other micron-size arrangements of MoS2 layers. An integrative set of high-resolution and analytical electron microscopy techniques, in conjunction with Raman and X-ray photoelectron spectroscopy (XPS), revealed the structural features of the MoS2 microstructures. Raman and XPS confirmed the presence of MoS2 and some residual oxide phases. Ultra-high-resolution scanning electron microscopy provided direct observation of the distinctive stacking of layers forming the pyramidal microstructures. Cross section samples from selected structures were done using focused ion beam. An extent of transmission electron microscopy and Cs-corrected scanning transmission electron microscopy (Cs-corrected STEM) results is discussed. This approach allowed to understand the growth mechanism of the triangular MoS2 microstructures through spiral grow around a screw dislocation, initiated at the center of the assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. https://doi.org/10.1038/nnano.2012.193

    Article  CAS  Google Scholar 

  2. Saldanha PL, Brescia R, Prato M et al (2014) Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles. Chem Mater 26:1442–1449. https://doi.org/10.1021/cm4035598

    Article  CAS  Google Scholar 

  3. Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2018) Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett 10:1–27. https://doi.org/10.1007/s40820-017-0176-y

    Article  CAS  Google Scholar 

  4. McGarrigle EM, Myers EL, Olla O et al (2007) Chalcogenides as organocatalysts. Chem Rev 107:5841–5883

    Article  CAS  Google Scholar 

  5. Dai X, Du K, Li Z et al (2015) Enhanced hydrogen evolution reaction on few-layer MoS2 nanosheets-coated functionalized carbon nanotubes. Int J Hydrog Energy 40:8877–8888

    Article  CAS  Google Scholar 

  6. Hinnemann B, Moses PG, Bonde J et al (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309. https://doi.org/10.1021/ja0504690

    Article  CAS  Google Scholar 

  7. Rowley-Neale SJ, Brownson DAC, Smith GC et al (2015) 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale 7:18152–18168. https://doi.org/10.1039/C5NR05164A

    Article  CAS  Google Scholar 

  8. Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099. https://doi.org/10.1021/nn405938z

    Article  CAS  Google Scholar 

  9. Ramakrishna Matte HSS, Gomathi A, Manna AK et al (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062. https://doi.org/10.1002/anie.201000009

    Article  CAS  Google Scholar 

  10. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:2–5. https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  Google Scholar 

  11. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  12. O’Neill A, Khan U, Coleman JN (2012) Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater 24:2414–2421. https://doi.org/10.1021/cm301515z

    Article  CAS  Google Scholar 

  13. Eda G, Yamaguchi H, Voiry D et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116. https://doi.org/10.1021/nl201874w

    Article  CAS  Google Scholar 

  14. Najmaei S, Liu Z, Zhou W et al (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754–759. https://doi.org/10.1038/nmat3673

    Article  CAS  Google Scholar 

  15. Lee Y, Lee J, Bark H et al (2014) Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 6:2821–2826. https://doi.org/10.1039/c3nr05993f

    Article  CAS  Google Scholar 

  16. Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. https://doi.org/10.1021/nl400258t

    Article  CAS  Google Scholar 

  17. Kim D, Sun D, Lu W et al (2011) Toward the growth of an aligned single-layer MoS2 film. Langmuir 27:11650–11653. https://doi.org/10.1021/la201878f

    Article  CAS  Google Scholar 

  18. Wu S, Huang C, Aivazian G et al (2013) Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7:2768–2772. https://doi.org/10.1021/nn4002038

    Article  CAS  Google Scholar 

  19. Dong H, Liu C, Ye H et al (2015) Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Sci Rep 5:2–11. https://doi.org/10.1038/srep17542

    Article  CAS  Google Scholar 

  20. Daage M (1994) Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model. J Catal 149:414–427

    Article  CAS  Google Scholar 

  21. Tye CT, Smith KJ (2006) Catalytic activity of exfoliated MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrogenation reactions. Top Catal 37:129–135. https://doi.org/10.1007/s11244-006-0014-9

    Article  CAS  Google Scholar 

  22. Xie J, Zhang J, Li S et al (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888. https://doi.org/10.1021/ja408329q

    Article  CAS  Google Scholar 

  23. Sarma PV, Patil PD, Barman PK et al (2015) Controllable growth of few-layer spiral WS2. RSC Adv 6:376–382. https://doi.org/10.1039/c5ra23020a

    Article  Google Scholar 

  24. Chen L, Liu B, Abbas AN et al (2014) Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur-assisted chemical vapor deposition. ACS Nano 8:11543–11551. https://doi.org/10.1021/nn504775f

    Article  CAS  Google Scholar 

  25. Zhang L, Liu K, Wong AB et al (2014) Three-dimensional spirals of atomic layered MoS2. Nano Lett 14:6418–6423. https://doi.org/10.1021/nl502961e

    Article  CAS  Google Scholar 

  26. Nie Y, Barton AT, Addou R et al (2018) Dislocation driven spiral and non-spiral growth in layered chalcogenides. Nanoscale 10:15023–15034. https://doi.org/10.1039/c8nr02280a

    Article  CAS  Google Scholar 

  27. Guo Y, Fu X, Peng Z (2018) Controllable synthesis of MoS2 nanostructures from monolayer flakes, few-layer pyramids to multilayer blocks by catalyst-assisted thermal evaporation. J Mater Sci 53:8098–8107. https://doi.org/10.1007/s10853-018-2103-0

    Article  CAS  Google Scholar 

  28. Zheng J, Yan X, Lu Z et al (2017) High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater 29:2–7. https://doi.org/10.1002/adma.201604540

    Article  CAS  Google Scholar 

  29. Shearer MJ, Samad L, Zhang Y et al (2017) Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J Am Chem Soc 139:3496–3504. https://doi.org/10.1021/jacs.6b12559

    Article  CAS  Google Scholar 

  30. Macchione MA, Mendoza-Cruz R, Bazan-Diaz L et al (2020) Electron microscopy study of the carbon-induced 2H-3R-1T phase transition of MoS2. New J Chem 44:1190–1193. https://doi.org/10.1039/c9nj03850g

    Article  CAS  Google Scholar 

  31. Cortés N, Rosales L, Orellana PA et al (2018) Stacking change in MoS2 bilayers induced by interstitial Mo impurities. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-20289-1

    Article  CAS  Google Scholar 

  32. Lee Y-H, Zhang X-Q, Zhang W et al (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325. https://doi.org/10.1002/adma.201104798

    Article  CAS  Google Scholar 

  33. Li X-L, Ge J-P, Li Y-D (2004) Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem - A Eur J 10:6163–6171. https://doi.org/10.1002/chem.200400451

    Article  CAS  Google Scholar 

  34. Gómez-Rodríguez A, Beltrán-del-Río LM, Herrera-Becerra R (2010) SimulaTEM: multislice simulations for general objects. Ultramicroscopy 110:95–104. https://doi.org/10.1016/j.ultramic.2009.09.010

    Article  CAS  Google Scholar 

  35. Fan JH, Gao P, Zhang AM et al (2014) Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J Appl Phys. https://doi.org/10.1063/1.4862859

    Article  Google Scholar 

  36. Chakraborty B, Matte HSSR, Sood AK, Rao CNR (2013) Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc 44:92–96. https://doi.org/10.1002/jrs.4147

    Article  CAS  Google Scholar 

  37. Zheng W, Zhu Y, Li F, Huang F (2018) Raman spectroscopy regulation in van der Waals crystals. Photonics Res 6:1101. https://doi.org/10.1364/prj.6.001101

    Article  Google Scholar 

  38. Cross JS, Schrader GL (1995) Low pressure chemical vapor deposition of molybdenum oxides from molybdenum hexacarbonyl and oxygen. Thin Solid Films 259:5–13. https://doi.org/10.1016/0040-6090(94)06427-X

    Article  CAS  Google Scholar 

  39. Dieterle M, Mestl G (2002) Raman spectroscopy of molybdenum oxides: Part II. Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2. Phys Chem Chem Phys 4:822–826. https://doi.org/10.1039/b107046k

    Article  CAS  Google Scholar 

  40. Moura JVB, Silveira JV, da Silva Filho JG et al (2018) Temperature-induced phase transition in h-MoO3: stability loss mechanism uncovered by Raman spectroscopy and DFT calculations. Vib Spectrosc 98:98–104. https://doi.org/10.1016/j.vibspec.2018.07.008

    Article  CAS  Google Scholar 

  41. Kondekar NP, Boebinger MG, Woods EV, McDowell MT (2017) In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl Mater Interfaces 9:32394–32404. https://doi.org/10.1021/acsami.7b10230

    Article  CAS  Google Scholar 

  42. Syari’ati A, Kumar S, Zahid A et al (2019) Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem Commun 55:10384–10387. https://doi.org/10.1039/c9cc01577a

    Article  CAS  Google Scholar 

  43. Wang QF, Yanzhang RP, Ren XN et al (2016) Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. Int J Hydrog Energy 41:21870–21882. https://doi.org/10.1016/j.ijhydene.2016.07.257

    Article  CAS  Google Scholar 

  44. Iranmahboob J, Gardner SD, Toghiani H, Hill DO (2004) XPS study of molybdenum sulfide catalyst exposed to CO and H2. J Colloid Interface Sci 270:123–126. https://doi.org/10.1016/j.jcis.2003.11.013

    Article  CAS  Google Scholar 

  45. Wang W, Li L, Tan S et al (2016) Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel 179:1–9. https://doi.org/10.1016/j.fuel.2016.03.068

    Article  CAS  Google Scholar 

  46. Lee YJ, Barrera D, Luo K, Hsu JWP (2012) In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions. J Nanotechnol 2012:3–8. https://doi.org/10.1155/2012/195761

    Article  CAS  Google Scholar 

  47. Rajagopal S, Nataraj D, Khyzhun OY et al (2011) Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of pyrazine intercalated MoO3 hybrid nanostructures. CrystEngComm 13:2358–2368. https://doi.org/10.1039/C0CE00303D

    Article  CAS  Google Scholar 

  48. Huang L, Xu H, Zhang R et al (2013) Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl Surf Sci 283:25–32. https://doi.org/10.1016/j.apsusc.2013.05.106

    Article  CAS  Google Scholar 

  49. Jin S, Bierman MJ, Morin SA (2010) A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J Phys Chem Lett 1:1472–1480. https://doi.org/10.1021/jz100288z

    Article  CAS  Google Scholar 

  50. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik? Angew Chemie 121:62–108. https://doi.org/10.1002/ange.200802248

    Article  Google Scholar 

  51. Dong F, Wu L, Sun Y et al (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21:15171. https://doi.org/10.1039/c1jm12844b

    Article  CAS  Google Scholar 

  52. Wang H, Robinson JT, Diankov G, Dai H (2010) Nanocrystal growth on graphene with various degrees of oxidation. Am Chem Soc 132:3270–3271

    Article  CAS  Google Scholar 

  53. Morin SA, Forticaux A, Bierman MJ, Jin S (2011) Screw dislocation-driven growth of two-dimensional nanoplates. Nano Lett 11:4449–4455. https://doi.org/10.1021/nl202689m

    Article  CAS  Google Scholar 

  54. Viswanath B, Kundu P, Mukherjee B, Ravishankar N (2008) Predicting the growth of two-dimensional nanostructures. Nanotechnology 19:195603. https://doi.org/10.1088/0957-4484/19/19/195603

    Article  CAS  Google Scholar 

  55. Sarma PV, Patil PD, Barman PK et al (2016) Controllable growth of few-layer spiral WS2. RSC Adv 6:376–382. https://doi.org/10.1039/C5RA23020A

    Article  CAS  Google Scholar 

  56. Gutiérrez HR, Perea-López N, Elías AL et al (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454. https://doi.org/10.1021/nl3026357

    Article  CAS  Google Scholar 

  57. van der Zande AM, Huang PY, Chenet DA et al (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12:554–561. https://doi.org/10.1038/nmat3633

    Article  CAS  Google Scholar 

  58. Kan M, Wang JY, Li XW et al (2014) Structures and phase transition of a MoS2 monolayer. J Phys Chem C 118:1515–1522. https://doi.org/10.1021/jp4076355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks CONACyT-Mexico for the support. To Alejandro Arizpe Zapata and Luis Gerardo Silva Vidaurri for technical support at CIMAV Monterrey to perform Raman and XPS measurements and E. Arzt for support through the INM. Enrique Samaniego-Benitez thanks Cátedras Research Program of CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Enrique Samaniego-Benitez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaniego-Benitez, J.E., Mendoza-Cruz, R., Bazán-Díaz, L. et al. Synthesis and structural characterization of MoS2 micropyramids. J Mater Sci 55, 12203–12213 (2020). https://doi.org/10.1007/s10853-020-04878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04878-y

Navigation