Skip to main content

Advertisement

Log in

Fabrication of high-strength PET fibers modified with graphene oxide of varying lateral size

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The large lateral-sized graphene oxide (LGO) was successfully broken into medium- and small lateral-sized graphene oxide (MGO and SGO, respectively), using a self-designed tubular ultrasonic instrument and other different techniques such as centrifugation, ultrasonication, and freeze-drying. Nanocomposite fibers composed of polyester (PET) material modified with various lateral-sized graphene oxide (GO) were prepared by twin-rotor continuous extrusion and melt spinning. The effects of high-speed mixing and GO lateral size on the mechanical and thermal properties of the composite samples were investigated. Compared to the conventional twin-screw extruder, a twin-rotor continuous extruder achieves a more uniform distribution of GO in the PET matrix. Furthermore, the use of SGO yields the best dispersion and interfacial compatibility properties. It also promotes crystallization, which confirms that, compared to LGO and MGO, SGO plays a more important role in the heterogeneous nucleation of PET. Among the investigated samples, PET/SGO fibers loaded with 0.1 wt% SGO show the highest tensile strength (890 MPa) and Young's modulus (30 GPa). Therefore, the high-speed mixing of PET with nanometer-sized SGO using a twin-rotor continuous extruder has broad application prospects in the field of GO-reinforced polymers, on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim JY, Kim SH (2010) In situ fibril formation of thermotropic liquid crystal polymer in polyesters blends. J Polym Sci Pol Phys 43:3600–3610

    Article  CAS  Google Scholar 

  2. Kim JY, Kim OS, Kim SH, Jeon HY (2004) Effects of electron beam irradiation on poly(ethylene 2, 6-naphthalate)/poly(ethylene terephthalate) blends. Polym Eng Sci 44:395–405

    Article  CAS  Google Scholar 

  3. Anand KA, Agarwal US, Joseph R (2006) Carbon nanotubes induced crystallization of poly(ethyleneterephthalate). Polymer 47:3976–3980

    Article  CAS  Google Scholar 

  4. Geim AK (2009) Graphene: status and prospects. Science 342:1530–1534

    Article  CAS  Google Scholar 

  5. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–533

    Article  CAS  Google Scholar 

  6. Jamal SMZ, Okan BS, Menceloglu Y (2016) Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Mater Chem Phys 176:58–67

    Article  CAS  Google Scholar 

  7. Bora C, Gogoi P, Baglari S, Dolui SK (2013) Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. J Appl Polym Sci 129:3432–3438

    Article  CAS  Google Scholar 

  8. Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  9. Agarwal S, Zhou XZ, Ye F, He QY, Chen GCK, Soo J, Boey F, Zhang H, Chen P (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26:2244–2247

    Article  CAS  Google Scholar 

  10. Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103

    Article  CAS  Google Scholar 

  11. Song S, Zhai Y, Zhang Y (2016) Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl Mater Interfaces 8:31264–31272

    Article  CAS  Google Scholar 

  12. Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen ST (2012) Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 6:2008–2019

    Article  CAS  Google Scholar 

  13. Lee KE, Kim JE, Maiti UN, Lim J, Hwang JO, Shim J, Oh JJ, Yun T, Kim SO (2014) Liquid crystal size selection of large-size graphene oxide for size-dependent n-doping and oxygen reduction catalysis. ACS Nano 8:9073–9080

    Article  CAS  Google Scholar 

  14. Chen J, Li Y, Huang L, Jia N, Li C, Shi G (2015) Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv Mater 27:3654–3660

    Article  CAS  Google Scholar 

  15. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  16. Zhang SY, Cheng Y, Xu WJ, Li J, Sun J, Wang JJ, Qin CX, Dai LX (2017) Dispersibility of different sized graphene oxide sheets and their reinforcement on polyamide 6 fibers. Rsc Adv 7:56682–56690

    Article  CAS  Google Scholar 

  17. Wang XL, Bai H, Shi GQ (2011) Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc 133:6338–6342

    Article  CAS  Google Scholar 

  18. Zhang SY, Li YJ, Sun J, Wang JJ, Qin CX, Dai LX (2016) Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption. RSC Adv 6:74053–74060

    Article  CAS  Google Scholar 

  19. Kreitmeier SN, Liang GL, Noid DW, Sumpter BG (1996) Thermal analysis via molecular dynamics simulation. J Therm Anal Calorim 46:853–869

    Article  CAS  Google Scholar 

  20. Samui BK, Prakasan MP, Ramesh C, Chakrabarty D, Mukhopadhyay R (2013) Structure-property relationship of different types of polyester industrial yarns. J Text I 104:35–45

    Article  CAS  Google Scholar 

  21. Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35:177–185

    Article  Google Scholar 

  22. Liu HH, Hou LC, Peng WW, Zhang Q, Zhang XX (2012) Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber. J Mater Sci 47:8052–8060. https://doi.org/10.1007/s10853-012-6695-5

    Article  CAS  Google Scholar 

  23. Meng H, Sui GX, Fang PF, Yang R (2008) Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49:610–620

    Article  CAS  Google Scholar 

  24. Todorov LV, Martins CI, Viana JLC (2009) Characterization of pet nanocomposites with different nanofillers. Solid State Phenom 151:113–117

    Article  CAS  Google Scholar 

  25. Hsieh YL, Mo Z (2010) Crystalline structures of poly(ethylene terephthalate) fibers. J Appl Polym Sci 33:1479–1485

    Article  Google Scholar 

  26. Youssefi M, Morshed M, Kish MH (2007) Crystalline structure of poly(ethylene terephthalate) filaments. J Appl Polym Sci 106:2703–2709

    Article  CAS  Google Scholar 

  27. Bai S, Hu JZ, Pugmire RJ, Grant DM, Taylor CMV, Rubin JB, Peterson EJ (1998) Solid state NMR and wide angle X-ray diffraction studies of supercritical fluid CO2-treated poly(ethylene terephthalate). Macromolecules 31:9238–9246

    Article  CAS  Google Scholar 

  28. Liu YT, Yin LX, Zhao HR, Song GK, Tang FM, Wang LL, Shao HL, Zhang YP (2016) Lamellar and fibrillar structure evolution of poly(ethylene terephthalate) fiber in thermal annealing. Polymer 105:157–166

    Article  CAS  Google Scholar 

  29. Wang ZG, Hsiao BS, Fu BX, Liu L, Yeh F, Sauer BB, Chang H, Schultz JM (2000) Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering. Polymer 41:1791–1797

    Article  CAS  Google Scholar 

  30. Abbasi M, Mojtahedi MRM, Khosroshahi A (2007) Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles. J Appl Polym Sci 103:3972–3975

    Article  CAS  Google Scholar 

  31. Shioya M, Kawazoe T, Okazaki R, Suei T, Sakurai S, Yamamoto K, Kikutani T (2008) Small-angle X-ray scattering study on the tensile fracture process of poly(ethylene terephthalate) fiber. Macromolecules 41:4758–5467

    Article  CAS  Google Scholar 

  32. Slobodian P (2008) Rigid amorphous fraction in poly(ethylene terephthalate) determined by dilatometry. J Therm Anal Calorim 94:545–551

    Article  CAS  Google Scholar 

  33. Flores A, Ania F, Arribas C, Ochoa A, Scholtyssek S, Balta-Calleja FJ, Baer E (2012) Confined crystallization of nanolayered poly(ethylene terephthalate) using X-ray diffraction methods. Polymer 53:3986–3993

    Article  CAS  Google Scholar 

  34. Okada K, Higashioji T, Nakagawa T, Uchida H, Takahashi K, Inoue R, Nishida K, Kanaya T (2013) Structural analysis of poly(ethylene terephthalate) during uniaxial drawing above the glass transition temperature. Polym J 45:50–56

    Article  CAS  Google Scholar 

  35. Wan T, Chen L, Chua YC, Lu X (2004) Crystalline morphology and isothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci 94:1381–1388

    Article  CAS  Google Scholar 

  36. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K (2010) Non-isothermal crystallization kinetic of poly(ethylene terephthalate)/fumed silica (PET/SiO2) prepared by in situ polymerization. Thermochim Acta 510:103–112

    Article  CAS  Google Scholar 

  37. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K (2009) Kinetics study of cold-crystallization of poly(ethylene terephthalate) nanocomposites with multi-walled carbon nanotubes. Thermochim Acta 493:68–75

    Article  CAS  Google Scholar 

  38. Bikiaris DN, Achilias DS, Giliopoulos DJ, Karayannidis GP (2006) Effect of activated carbon black nanoparticles on solid state polymerization of poly(ethylene terephthalate). Eur Polym J 42:3190–3201

    Article  CAS  Google Scholar 

  39. Ke YC, Yang ZB, Zhu CF (2002) Investigation of properties, nanostructure, and distribution in controlled polyester polymerization with layered silicate. J Appl Polym Sci 85:2677–2691

    Article  CAS  Google Scholar 

  40. Wang Y, Gao J, Ma Y, Agarwal US (2006) Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Compos B 37:399–407

    Article  CAS  Google Scholar 

  41. Hu G, Feng X, Zhang S, Yang M (2008) Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J Appl Polym Sci 108:4080–4089

    Article  CAS  Google Scholar 

  42. Gao Y, Wang Y, Shi J, Bai H, Song B (2008) Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate). Polym Test 27:179–188

    Article  CAS  Google Scholar 

  43. Zhang XX, Meng QJ, Wang XC, Bai SH (2011) Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites. J Mater Sci 46:923–930. https://doi.org/10.1007/s10853-010-4836-2

    Article  CAS  Google Scholar 

  44. Anoop Anand K, Sunil Jose T, Agarwal US, Sreekumar TV, Banwari B, Joseph R (2010) PET-SWNT nanocomposite fibers through melt spinning. Int J Polym Mater 59:438–449

    Article  CAS  Google Scholar 

  45. Xue BX, Song YH, Peng Y, Bai J, Yang YR, Niu M, Yong YZ, Liu XG (2017) Enhancing the flame retardant of polyethylene terephthalate (PET) fiber via incorporation of multi-walled carbon nanotubes based phosphorylated chitosan. J Text I 109:871–878

    Article  CAS  Google Scholar 

  46. Hur JW, Yoo HJ, Cho JW, Kim KH (2016) Orientation and mechanical properties of laser-induced photothermally drawn fibers composed of multiwalled carbon nanotubes and poly(ethylene terephthalate). J Polym Sci Pol Phys 54:603–609

    Article  CAS  Google Scholar 

  47. Yoo HJ, Kim KH, Yadav SK, Cho JW (2012) Effects of carbon nanotube functionalization and annealing on crystallization and mechanical properties of melt-spun carbon nanotubes/poly(ethylene terephthalate) fibers. Compos Sci Technol 72:1834–1840

    Article  CAS  Google Scholar 

  48. Mazinani S, Ajji A, Dubois C (2010) Structure and properties of melt spun PET/MWCNT nanocomposite fibers. Polym Eng Sci 50:1956–1968

    Article  CAS  Google Scholar 

  49. Khan U, Young K, O’Neill A, Coleman JN (2012) High strength composite fibres from polyester filled with nanotubes and grapheme. J Mater Chem 22:12907–12914

    Article  CAS  Google Scholar 

  50. Li JW, Jiang ZL, Li HY, Wang ZS, Wang HP (2019) Preparation and antistatic properties of PET fibers modified with grapheme. China Synth Fiber Ind 42:1–4

    Google Scholar 

  51. Hu XW, Xu RP, Wang SC, Lv DS, Tang DY (2018) Preparation and properties of graphene anion modified polyester fibers. Synth Fiber China 47:30–32

    Google Scholar 

  52. Liu YY (2018) Preparation of graphene oxide copolymerization modified PET fibers and study on their properties. Master Dissertation, Donghua University

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0303000) and the New Materials Research Key Program of Tianjin (Grant No. 16ZXCLGX00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxiang Zhang.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Zhang, X., Gao, X. et al. Fabrication of high-strength PET fibers modified with graphene oxide of varying lateral size. J Mater Sci 55, 8940–8953 (2020). https://doi.org/10.1007/s10853-020-04652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04652-0

Navigation