Skip to main content

Advertisement

Log in

Sol–gel-based coatings for oxidation protection of TiAl alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The low density, high specific strength, and good creep properties make TiAl alloys being promising high-temperature structural materials in aerospace and automotive industries. However, the insufficient oxidation resistance limits their extensive practical applications . It is the intention of this review to illustrate the mechanism and development of sol–gel-based coatings, a surface modification approach for oxidation protection of TiAl alloys, but not to present a general review on the oxidation protection of TiAl alloys. The oxidation behavior and mechanism of TiAl alloys were addressed briefly. The discussion focused mainly on the sol–gel coatings preparation method and generation mechanism. Finally, the development trend of sol–gel-based coatings for high-temperature oxidation of TiAl alloys was prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Clemens H, Kestler H (2000) Processing and applications of intermetallic γ-TiAl-based alloys. Adv Eng Mater 2:551–570

    Article  CAS  Google Scholar 

  2. Leyens C, Peters M (2006) Titanium and titanium alloys: fundamentals and applications. Wiley, New York

    Google Scholar 

  3. Clemens H, Mayer S (2013) Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15:191–215

    Article  CAS  Google Scholar 

  4. Pflumm R, Friedle S, Schuetze M (2015) Oxidation protection of gamma-TiAl-based alloys—a review. Intermetallics 56:1–14

    Article  CAS  Google Scholar 

  5. Appel F, Clemens H, Fischer F (2016) Modeling concepts for intermetallic titanium aluminides. Prog Mater Sci 81:55–124

    Article  CAS  Google Scholar 

  6. Bewlay BP, Nag S, Suzuki A, Weimer MJ (2016) TiAl alloys in commercial aircraft engines. Mater High Temp 33:549–559

    Article  CAS  Google Scholar 

  7. Schüetze M, Quadakkers WJ (2017) Future directions in the field of high-temperature corrosion research. Oxid Met 87:681–704

    Article  CAS  Google Scholar 

  8. Zeng SW, Zhao AM, Jiang HT, Luo L, He F, Li X, Ren YS (2018) Evolution of surface morphology of oxide formed during initial-stage oxidation of gamma-TiAl alloy using in situ environmental SEM. Oxid Met 90:649–655

    Article  CAS  Google Scholar 

  9. Qu SJ, Tang SQ, Feng AH, Feng C, Shen J, Chen DL (2018) Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Mater 148:300–310

    Article  CAS  Google Scholar 

  10. Maurice V, Despert G, Zanna S, Josso P, Bacos MP, Marcus P (2007) XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys. Acta Mater 55:3315–3325

    Article  CAS  Google Scholar 

  11. Wang L, Shang J-X, Wang F-H, Chen Y, Zhang Y (2013) Oxygen adsorption on γ-TiAl surfaces and the related surface phase diagrams: a density-functional theory study. Acta Mater 61:1726–1738

    Article  CAS  Google Scholar 

  12. Dettenwanger F, Schumann E, RÜhle M, Rakowski J, Meier GH (1994) The effect of nitrogen on the oxidation of TiAl. MRS Online Proc Libr Arch 364:981–986

    Article  Google Scholar 

  13. Rakowski J, Pettit F, Meier G, Dettenwanger F, Schumann E, Ruhle M (1995) The effect of nitrogen on the oxidation of γ-TiAl. Scr Metall Mater 33:997–1003

    Article  CAS  Google Scholar 

  14. Zheng N, Quadakkers WJ, Gil A, Nickel H (1995) Studies concerning the effect of nitrogen on the oxidation behavior of TiAl-based intermetallics at 900°C. Oxid Met 44:477–499

    Article  CAS  Google Scholar 

  15. Lang C, Schütze M (1996) TEM investigations of the early stages of TiAl oxidation. Oxid Met 46:255–285

    Article  CAS  Google Scholar 

  16. Lu W, Chen C, Xi Y, Guo C, Wang F, He L (2007) TEM investigation of the oxide scale of Ti–46.5Al–5Nb at 900 °C for 50 h. Intermetallics 15:824–831

    Article  CAS  Google Scholar 

  17. Beye RW, Gronsky R (1994) Novel phases in the oxidation of γ-titanium aluminum. Acta Metall Mater 42:1373–1381

    Article  CAS  Google Scholar 

  18. Cheng YF, Dettenwanger F, Mayer J, Schumann E, Rühle M (1996) Identification of a new phase formed during the oxidation of γ-titanium aluminum. Scr Mater 34:707–711

    Article  CAS  Google Scholar 

  19. Shemet V, Karduck P, Hoven H, Grushko B, Fischer W, Quadakkers WJ (1997) Synthesis of the cubic Z-phase in the Ti-Al-O system by a powder metallurgical method. Intermetallics 5:271–280

    Article  CAS  Google Scholar 

  20. Dai JJ, Zhu JY, Chen CZ, Weng F (2016) High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J Alloys Compd 685:784–798

    Article  CAS  Google Scholar 

  21. Wu X (2006) Review of alloy and process development of TiAl alloys. Intermetallics 14:1114–1122

    Article  CAS  Google Scholar 

  22. Garip Y, Ozdemir O (2019) Comparative study of the oxidation and hot corrosion behaviors of TiAl–Cr intermetallic alloy produced by electric current activated sintering. J Alloys Compd 780:364–377

    Article  CAS  Google Scholar 

  23. Naveed M, Renteria AF, Weiß S (2017) Role of alloying elements during thermocyclic oxidation of β/γ-TiAl alloys at high temperatures. J Alloys Compd 691:489–497

    Article  CAS  Google Scholar 

  24. Zhang L, Xiao W-H, Jiang H-R (2006) Morphology and formation of high-temperature oxide films of Ti Al alloys. Chin J Nonferrous Met 16:899–903

    CAS  Google Scholar 

  25. Shida Y, Anada H (1996) The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air. Oxid Met 45:197–219

    Article  CAS  Google Scholar 

  26. Taniguchi S, Shibata T (1996) Influence of additional elements on the oxidation behaviour of TiAl. Intermetallics 4(Supplement 1):S85–S93

    Article  CAS  Google Scholar 

  27. Lin JP, Zhao LL, Li GY, Zhang LQ, Song XP, Ye F, Chen GL (2011) Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 19:131–136

    Article  CAS  Google Scholar 

  28. Brotzu A, Felli F, Pilone D (2014) Effect of alloying elements on the behaviour of TiAl-based alloys. Intermetallics 54:176–180

    Article  CAS  Google Scholar 

  29. Durda E, Przybylski K (2016) Oxidation behavior of Ti–46Al–8Nb alloy with boron and carbon addition under thermal cycling conditions. Intermetallics 71:51–56

    Article  CAS  Google Scholar 

  30. Yoshihara M, Miura K (1995) Effects of Nb addition on oxidation behavior of TiAl. Intermetallics 3:357–363

    Article  CAS  Google Scholar 

  31. Jiang H, Hirohasi M, Lu Y, Imanari H (2002) Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr Mater 46:639–643

    Article  CAS  Google Scholar 

  32. Tetsui T, Ono S (1999) Endurance and composition and microstructure effects on endurance of TiAl used in turbochargers. Intermetallics 7:689–697

    Article  CAS  Google Scholar 

  33. Copland EH, Gleeson B, Young DJ (1999) Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000 °C. Acta Mater 47:2937–2949

    Article  CAS  Google Scholar 

  34. Dettenwanger F, Schumann E, Ruhle M, Rakowski J, Meier GH (1998) Microstructural study of oxidized γ-TiAl. Oxid Met 50:269–307

    Article  CAS  Google Scholar 

  35. Kawaura H, Kawahara H, Nishino K, Saito T (2002) New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys. Mater Sci Eng A 329–331:589–595

    Article  Google Scholar 

  36. Huang Y, Peng X, Dong Z, Cui Y (2018) Thermal growth of exclusive alumina scale on a TiAl based alloy: shot peening effect. Corros Sci 143:76–83

    Article  CAS  Google Scholar 

  37. Kanjer A, Optasanu V, Marco de Lucas MC, Heintz O, Geoffroy N, François M, Berger P, Montesin T, Lavisse L (2018) Improving the high temperature oxidation resistance of pure titanium by shot-peening treatments. Surf Coat Technol 343:93–100

    Article  CAS  Google Scholar 

  38. Taniguchi S, Shibata T, Murakami A, Chihara K (1994) Improvement in the oxidation resistance of TiAl by preoxidation in a Cr2O3 powder pack. Mater Trans JIM 35:616–622

    Article  CAS  Google Scholar 

  39. Taniguchi S, Shibata T, Sakon S (1992) Improvement in oxidation resistance of TiAl by preoxidation at 1200 K in a pack mixture of Cr2O3 and Cr powders. Zairyo-to-Kankyo 41:453–460

    Article  CAS  Google Scholar 

  40. Taniguchi S, Shibata A, Murakami A, Chihara K (1994) Improvement in the oxidation resistance of TiAl by preoxidation in a TiO2-powder pack. Oxid Met 42:17–29

    Article  CAS  Google Scholar 

  41. Sun P, Zhang L, Zhang L, Lin J (2012) Improvement in the liquid zinc corrosion resistance of high Nb–TiAl alloys by pre-oxidation in a SiO 2-powder pack. Sci China Technol Sci 55:505–509

    Article  CAS  Google Scholar 

  42. Suzuki T, Goto M, Yoshihara M, Tanaka R (1991) Improvement in oxidation resistance of the Ti-31 ∼ 39 mass% Al alloys by heat treatment under a low partial pressure oxygen atmosphere. Mater Trans JIM 32:1017–1023

    Article  CAS  Google Scholar 

  43. Xin L, Shao G, Wang F, Tsakiropoulos P, Li T (2003) Improving high-temperature oxidation resistance of TiAl-based alloys by MnCl2 surface treatment. Intermetallics 11:651–660

    Article  CAS  Google Scholar 

  44. Gil A, Żurek Z, Stawiarski A, Dąbek J (2012) Improvement of oxidation resistance of TiAl–Nb alloy by dipping in F-containing resin. Adv Mater Res 347–353:3514–3517

    Google Scholar 

  45. Donchev A, Richter E, Schütze M, Yankov R (2008) Improving the oxidation resistance of TiAl-alloys with fluorine. J Alloys Compd 452:7–10

    Article  CAS  Google Scholar 

  46. Friedle S, Nießen N, Braun R, Schütze M (2012) Thermal barrier coatings on γ-TiAl protected by the halogen effect. Surf Coat Technol 212:72–78

    Article  CAS  Google Scholar 

  47. Laska N, Friedle S, Braun R, Schütze M (2016) Lifetime of 7YSZ thermal barrier coatings deposited on fluorine-treated γ-TiAl-based TNM-B1 alloy. Mater Corros 67:1185–1194

    Article  CAS  Google Scholar 

  48. Schütze M, Schumacher G, Dettenwanger F, Hornauer U, Richter E, Wieser E, Möller W (2002) The halogen effect in the oxidation of intermetallic titanium aluminides. Corros Sci 44:303–318

    Article  Google Scholar 

  49. Friedle S, Pflumm R, Seyeux A, Marcus P, Schütze M (2018) ToF-SIMS study on the initial stages of the halogen effect in the oxidation of TiAl alloys. Oxid Met 89:123–139

    Article  CAS  Google Scholar 

  50. Donchev A, Gleeson B, Schütze M (2003) Thermodynamic considerations of the beneficial effect of halogens on the oxidation resistance of TiAl-based alloys. Intermetallics 11:387–398

    Article  CAS  Google Scholar 

  51. Schütze M (2017) The role of surface protection for high-temperature performance of TiAl alloys. JOM 69:2602–2609

    Article  CAS  Google Scholar 

  52. Mo M-H, Wu L-K, Cao H-Z, Lin J-P, Zheng G-Q (2016) Improvement of the high temperature oxidation resistance of Ti–50Al at 1000 °C by anodizing in ethylene glycol/BmimPF6 solution. Surf Coat Technol 286:215–222

    Article  CAS  Google Scholar 

  53. Mo M-H, Wu L-K, Cao H-Z, Lin J-P, Lu D-H, Zheng G-Q (2016) High temperature oxidation behavior and anti-oxidation mechanism of Ti–50Al anodized in ionic liquid. Surf Coat Technol 307:190–199

    Article  CAS  Google Scholar 

  54. Mo M-H, Wu L-K, Cao H-Z, Lin J-P, Zheng G-Q (2017) Halogen effect for improving high temperature oxidation resistance of Ti–50Al by anodization. Appl Surf Sci 407:246–254

    Article  CAS  Google Scholar 

  55. Wu L-K, Xia J-J, Cao H-Z, Liu W-J, Hou G-Y, Tang Y-P, Zheng G-Q (2018) Improving the high-temperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution. Oxid Met 90:617–631

    Article  CAS  Google Scholar 

  56. Xia J-J, Niu H-Z, Liu M, Cao H-Z, Zheng G-Q, Wu L-K (2019) Enhancement of high temperature oxidation resistance of Ti48Al5Nb alloy via anodic anodization in NH4F containing ethylene glycol. J Chin Soc Corros Prot 39:96–105

    Google Scholar 

  57. Bennett MJ, Tuson AT (1989) Improved high temperature oxidation behaviour of alloys by ion implantation. Mater Sci Eng A 116:79–87

    Article  Google Scholar 

  58. Stroosnijder MF (1998) Ion implantation for high temperature corrosion protection. Surf Coat Technol 100:196–201

    Article  Google Scholar 

  59. Taniguchi S, Uesaki K, Zhu YC, Matsumoto Y, Shibata T (1999) Influence of implantation of Al, Si, Cr or Mo ions on the oxidation behaviour of TiAl under thermal cycle conditions. Mater Sci Eng A 266:267–275

    Article  Google Scholar 

  60. Hornauer U, Richter E, Matz W, Reuther H, Mücklich A, Wieser E, Möller W, Schumacher G, Schütze M (2000) Microstructure and oxidation kinetics of intermetallic TiAl after Si- and Mo-ion implantation. Surf Coat Technol 128–129:418–422

    Article  Google Scholar 

  61. Li XY, Taniguchi S, Zhu YC, Fujita K, Iwamoto N, Matsunaga Y, Nakagawa K (2001) Oxidation behavior of TiAl protected by Si + Nb combined ion implantation. Intermetallics 9:443–449

    Article  CAS  Google Scholar 

  62. Taniguchi S, Zhu Y-C, Fujita K, Iwamoto N (2002) TEM observations of the initial oxidation stages of Nb-ion-implanted TiAl. Oxid Met 58:375–390

    Article  CAS  Google Scholar 

  63. Li XY, Taniguchi S (2005) Oxidation behavior of a γ-TiAl-based alloy implanted by silicon and/or carbon. Mater Sci Eng A 398:268–274

    Article  CAS  Google Scholar 

  64. Taniguchi S, Kuwayama T, Zhu YC, Matsumoto Y, Shibata T (2000) Influence of silicon ion implantation and post-implantation annealing on the oxidation behaviour of TiAl under thermal cycle conditions. Mater Sci Eng A 277:229–236

    Article  Google Scholar 

  65. Yankov RA, Kolitsch A, von Borany J, Munnik F, Gemming S, Alexewicz A, Bracht H, Roesner H, Donchev A, Schuetze M (2014) Microstructural studies of fluorine-implanted titanium aluminides for enhanced environmental durability. Adv Eng Mater 16:52–59

    Article  CAS  Google Scholar 

  66. Kim JP, Jung HG, Kim KY (1999) Al + Y codeposition using EB-PVD method for improvement of high-temperature oxidation resistance of TiAl. Surf Coat Technol 112:91–97

    Article  CAS  Google Scholar 

  67. Jung HG, Wee DM, Oh MH, Kim KY (2001) An Al + Y coating process for improvement of the high-temperature oxidation resistance of a TiAl alloy. Oxid Met 55:189–208

    Article  CAS  Google Scholar 

  68. Swadzba L, Maciejny A, Mendala B, Moskal G, Jarczyk G (2003) Structure and resistance to oxidation of an Al–Si diffusion coating deposited by Arc-PVD on a TiAlCrNb alloy. Surf Coat Technol 165:273–280

    Article  CAS  Google Scholar 

  69. Goral M, Swadzba L, Moskal G, Hetmanczyk M, Tetsui T (2009) Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method. Intermetallics 17:965–967

    Article  CAS  Google Scholar 

  70. Swadźba R, Swadźba L, Mendala B, Witala B, Tracz J, Marugi K, Pyclik Ł (2017) Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950 & #xB0;C. Intermetallics 87:81–89

    Article  CAS  Google Scholar 

  71. Zhou C, Xu H, Gong S, Yang Y, Kim KY (2000) A study on aluminide and Cr-modified aluminide coatings on TiAl alloys by pack cementation method. Surf Coat Technol 132:117–123

    Article  CAS  Google Scholar 

  72. Nishimoto T, Izumi T, Hayashi S, Narita T (2003) Two-step Cr and Al diffusion coating on TiAl at high temperatures. Intermetallics 11:225–235

    Article  CAS  Google Scholar 

  73. Tang Z, Wang F, Wu W (1999) Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl. Intermetallics 7:1271–1274

    Article  CAS  Google Scholar 

  74. Zhou C, Yang Y, Gong S, Xu H (2001) Effect of Ti–Al–Cr coatings on the high temperature oxidation behavior of TiAl alloys. Mater Sci Eng A 307:182–187

    Article  Google Scholar 

  75. Lee JK, Oh MH, Wee DM (2002) Long-term oxidation properties of Al–Ti–Cr two-phase alloys as coating materials for TiAl alloys. Intermetallics 10:347–352

    Article  CAS  Google Scholar 

  76. Ebach-Stahl A, Eilers C, Laska N, Braun R (2013) Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700 °C in air. Surf Coat Technol 223:24–31

    Article  CAS  Google Scholar 

  77. Dudziak T, Datta P, Du H, Ross I (2013) High temperature air oxidation resistance of TiAlCr-Y coated Ti45Al8Nb between 750 °C–950°C. Open Eng 3:722–731

    Article  CAS  Google Scholar 

  78. Sadeq FO, Sharifitabar M, Afarani MS (2018) Synthesis of Ti–Si–Al coatings on the surface of Ti–6Al–4V alloy via hot dip siliconizing route. Surf Coat Technol 337:349–356

    Article  CAS  Google Scholar 

  79. Dai JJ, Li SY, Zhang HX, Yu HJ, Chen CZ, Li Y (2018) Microstructure and high-temperature oxidation resistance of Ti–Al–Nb coatings on a Ti–6Al–4V alloy fabricated by laser surface alloying. Surf Coat Technol 344:479–488

    Article  CAS  Google Scholar 

  80. Tang ZL, Wang FH, Wu WT (1998) Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics. Surf Coat Technol 99:248–252

    Article  CAS  Google Scholar 

  81. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284

    Article  CAS  Google Scholar 

  82. Cheng YX, Wang W, Zhu SL, Xin L, Wang FH (2010) Arc ion plated-Cr2O3 intermediate film as a diffusion barrier between NiCrAlY and γ-TiAl. Intermetallics 18:736–739

    Article  CAS  Google Scholar 

  83. Kim D, Seo D, Huang X, Yang Q, Kim Y-W (2012) Cyclic oxidation behavior of a beta gamma powder metallurgy TiAl–4Nb–3Mn alloy coated with a NiCrAlY coating. Surf Coat Technol 206:3048–3054

    Article  CAS  Google Scholar 

  84. Gong X, Chen RR, Yang YH, Wang Y, Ding HS, Guo JJ, Su YQ, Fu HZ (2018) Effect of Mo on microstructure and oxidation of NiCoCrAlY coatings on high Nb containing TiAl alloys. Appl Surf Sci 431:81–92

    Article  CAS  Google Scholar 

  85. Ding Z, Miao Q, Liang W, Yang Z, Lin H (2018) Isothermal oxidation behavior of NiCoCrAlY/ZrO2 composite coating on γ-TiAl alloy. Mater Res Express 5:066524

    Article  CAS  Google Scholar 

  86. Zhang K, Zhang T, Song L (2018) Oxidation behavior of a high-Nb-containing TiAl alloy with multilayered thermal barrier coatings. J Therm Spray Technol 27:999–1010

    Article  CAS  Google Scholar 

  87. Wang DQ, Shi ZY, Teng YL (2005) Microstructure and oxidation of hot-dip aluminized titanium at high temperature. Appl Surf Sci 250:238–246

    Article  CAS  Google Scholar 

  88. Zhang Z, Teng X, Mao Y, Cao C, Wang S, Wang L (2010) Improvement of oxidation resistance of γ-TiAl at 900 and 1000 °C through hot-dip aluminizing. Oxid Met 73:455–466

    Article  CAS  Google Scholar 

  89. Zhang ZG, Wang YJ, Xiao LJ, Zhang LQ, Su Y, Lin JS (2012) High-temperature oxidation of hot-dip aluminizing coatings on a Ti3Al–Nb alloy and the effects of element additions. Corros Sci 64:137–144

    Article  CAS  Google Scholar 

  90. Jeng S-C (2013) Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti–6Al–4V alloy at 800 °C. Surf Coat Technol 235:867–874

    Article  CAS  Google Scholar 

  91. Xiang ZD, Rose S, Datta PK (2002) Pack deposition of coherent aluminide coatings on γ-TiAl for enhancing its high temperature oxidation resistance. Surf Coat Technol 161:286–292

    Article  CAS  Google Scholar 

  92. Goral M, Moskal G, Swadzba L (2009) Gas phase aluminizing of TiAl intermetallics. Intermetallics 17:669–671

    Article  CAS  Google Scholar 

  93. Chu MS, Wu SK (2003) The improvement of high temperature oxidation of Ti–50Al by sputtering Al film and subsequent interdiffusion treatment. Acta Mater 51:3109–3120

    Article  CAS  Google Scholar 

  94. Chu MS, Wu SK (2004) Improvement in the oxidation resistance of α2-Ti3Al by sputtering Al film and subsequent interdiffusion treatment. Surf Coat Technol 179:257–264

    Article  CAS  Google Scholar 

  95. Liu Z, Wang G (2005) Improvement of oxidation resistance of γ-TiAl at 800 and 900 °C in air by TiAl2 coatings. Mater Sci Eng A 397:50–57

    Article  CAS  Google Scholar 

  96. Zhang Z, Peng Y, Mao Y, Hou C, Xu L (2011) Hot-dip aluminizing fabrication of TiAl3 coating on TA15 alloy and its high temperature oxidation behaviors. High Temp Mater PR-ISR 30:519–525

    Google Scholar 

  97. Lee JK, Oh MH, Lee HK, Wee DM (2004) Plasma-sprayed Al–21Ti–23Cr coating for oxidation protection of TiAl alloys. Surf Coat Technol 182:363–369

    Article  CAS  Google Scholar 

  98. Liang W, Zhao XG (2001) Improving the oxidation resistance of TiAl-based alloy by siliconizing. Scr Mater 44:1049–1054

    Article  CAS  Google Scholar 

  99. Li XY, Taniguchi S, Matsunaga Y, Nakagawa K, Fujita K (2003) Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics 11:143–150

    Article  CAS  Google Scholar 

  100. Gray S, Jacobs MH, Ponton CB, Voice W, Evans HE (2004) A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3 layer. Mater Sci Eng A 384:77–82

    Article  Google Scholar 

  101. Xiang ZD, Rose SR, Burnell-Gray JS, Datta PK (2003) Co-deposition of aluminide and silicide coatings on gamma-TiAl by pack cementation process. J Mater Sci 38:19–28. https://doi.org/10.1023/A:1021149413017

    Article  CAS  Google Scholar 

  102. Wang J, Kong L, Wu J, Li T, Xiong T (2015) Microstructure evolution and oxidation resistance of silicon-aluminizing coating on gamma-TiAl alloy. Appl Surf Sci 356:827–836

    Article  CAS  Google Scholar 

  103. Zhang P, Guo X (2011) A comparative study of two kinds of Y and Al modified suicide coatings on an Nb–Ti–Si based alloy prepared by pack cementation technique. Corros Sci 53:4291–4299

    Article  CAS  Google Scholar 

  104. Tang Z, Wang F, Wu W (2000) Effect of Al2O3 and enamel coatings on 900 °C oxidation and hot corrosion behaviors of gamma-TiAl. Mater Sci Eng A 276:70–75

    Article  Google Scholar 

  105. Xiong Y, Zhu S, Wang F (2005) The oxidation behavior and mechanical performance of Ti60 alloy with enamel coating. Surf Coat Technol 190:195–199

    Article  CAS  Google Scholar 

  106. Sarkar S, Datta S, Das S, Basu D (2009) Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings. Surf Coat Technol 203:1797–1805

    Article  CAS  Google Scholar 

  107. Wang C, Wang W, Zhu S, Wang F (2013) Oxidation inhibition of γ-TiAl alloy at 900 °C by inorganic silicate composite coatings. Corros Sci 76:284–291

    Article  CAS  Google Scholar 

  108. Li W, Chen M, Wu M, Zhu S, Wang C, Wang F (2014) Microstructure and oxidation behavior of a SiC–Al2O3-glass composite coating on Ti–47Al–2Cr–2Nb alloy. Corros Sci 87:179–186

    Article  CAS  Google Scholar 

  109. Li W, Chen M, Wang C, Zhu S, Wang F (2013) Preparation and oxidation behavior of SiO2–Al2O3-glass composite coating on Ti–47Al–2Cr–2Nb alloy. Surf Coat Technol 218:30–38

    Article  CAS  Google Scholar 

  110. Li W, Zhu S, Wang C, Chen M, Shen M, Wang F (2013) SiO2–Al2O3–glass composite coating on Ti–6Al–4V alloy: oxidation and interfacial reaction behavior. Corros Sci 74:367–378

    Article  CAS  Google Scholar 

  111. Li W, Zhu S, Chen M, Wang C, Wang F (2014) Development of an oxidation resistant glass-ceramic composite coating on Ti–47Al–2Cr–2Nb alloy. Appl Surf Sci 292:583–590

    Article  CAS  Google Scholar 

  112. Chen M, Li W, Shen M, Zhu S, Wang F (2013) Glass–ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure. Corros Sci 74:178–186

    Article  CAS  Google Scholar 

  113. Shen M, Zhu S, Wang F (2015) Formation kinetics of multi-layered interfacial zone between gamma-TiAl and glass-ceramic coatings via interfacial reactions at 1000 °C. Corros Sci 91:341–351

    Article  CAS  Google Scholar 

  114. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, Cambridge

    Google Scholar 

  115. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  116. Zheludkevich ML, Salvado IM, Ferreira MGS (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15:5099–5111

    Article  CAS  Google Scholar 

  117. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147:424–436

    Article  Google Scholar 

  118. Zhu M, Li M, Li Y, Zhou Y (2006) Influence of sol–gel derived Al2O3 film on the oxidation behavior of a Ti3Al based alloy. Mater Sci Eng A 415:177–183

    Article  CAS  Google Scholar 

  119. Maecka J (2016) Oxidation behavior of Al2O3 coating on Ti–25Al–12.5Nb alloy. J Mater Eng Perform 25:2951–2958

    Article  CAS  Google Scholar 

  120. Zhang XJ, Li Q, Zhao SY, Gao CX, Zhang ZG (2008) Sol–gel Al2O3/ZrO2 duplex films for protection of a gamma-TiAl based alloy against high temperature oxidation. J Sol-Gel Sci Technol 47:107–114

    Article  CAS  Google Scholar 

  121. Taniguchi S, Shibata T, Katoh N (1993) Improvement in the high-temperature oxidation resistance of TiAl by sol-derived SiO2 coating. J Jpn I Met 57:666–673

    Article  CAS  Google Scholar 

  122. Zhu Y-C, Zhang Y, Li X, Fujita K, Iwamoto N (2000) The influence of magnetron-sputtered SiO2 coatings on the cyclic oxidation behavior of γ-TiAl alloys. Mater Trans JIM 41:1118–1120

    Article  CAS  Google Scholar 

  123. Yu C, Zhu S, Wei D, Wang F (2007) Amorphous sol–gel SiO2 film for protection of Ti6Al4V alloy against high temperature oxidation. Surf Coat Technol 201:5967–5972

    Article  CAS  Google Scholar 

  124. Teng S, Liang W, Li Z, Ma X (2008) Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol-gel method. J Alloys Compd 464:452–456

    Article  CAS  Google Scholar 

  125. Zhang XJ, Zhao SY, Gao CX, Wang SJ (2009) Amorphous sol–gel SiO2 film for protection of an orthorhombic phase alloy against high temperature oxidation. J Sol-Gel Sci Technol 49:221–227

    Article  CAS  Google Scholar 

  126. Zhang XJ, Gao YH, Ren BY, Tsubaki N (2010) Improvement of high-temperature oxidation resistance of titanium-based alloy by sol-gel method. J Mater Sci 45:1622–1628. https://doi.org/10.1007/s10853-009-4138-8

    Article  CAS  Google Scholar 

  127. Zhang XJ, Ren BY, Gao CX (2011) Synergetic effect of sol-gel silica coating and physical/chemical pre-treatment on the oxidation behavior of Ti–6Al–4V alloy. J Sol–Gel Sci Technol 59:561–568

    Article  CAS  Google Scholar 

  128. Sreedhar V, Das J, Mitra R, Roy SK (2012) Influence of superficial CeO2 coating on high temperature oxidation behavior of Ti–6Al–4V. J Alloys Compd 519:106–111

    Article  CAS  Google Scholar 

  129. Bik M, Gil A, Stygar M, Dąbrowa J, Jeleń P, Długoń E, Leśniak M, Sitarz M (2019) Studies on the oxidation resistance of SiOC glasses coated TiAl alloy. Intermetallics 105:29–38

    Article  CAS  Google Scholar 

  130. Bornside D, Macosko C, Scriven L (1989) Spin coating: one-dimensional model. J Appl Phys 66:5185–5193

    Article  CAS  Google Scholar 

  131. Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83:493–502

    Article  CAS  Google Scholar 

  132. Yao YB, Yao ZJ, Zhou YJ (2016) High-temperature oxidation resistance of sol–gel-derived ZrO2/(Al2O3–Y2O3) coating on titanium alloy. J Sol–Gel Sci Technol 80:612–618

    Article  CAS  Google Scholar 

  133. Yao J, He Y, Wang D, Lin J (2014) High-temperature oxidation resistance of (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated coating on 8Nb-TiAl alloy prepared by a novel spray pyrolysis. Corros Sci 80:19–27

    Article  CAS  Google Scholar 

  134. Taylor DJ, Fabes BD (1992) Laser processing of sol-gel coatings. J Non-Cryst Solids 147:457–462

    Article  Google Scholar 

  135. Neagu R, Perednis D, Princivalle A, Djurado E (2006) Zirconia coatings deposited by electrostatic spray deposition. Influence of the process parameters. Surf Coat Technol 200:6815–6820

    Article  CAS  Google Scholar 

  136. Sarkar P, Nicholson PS (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc 79:1987–2002

    Article  CAS  Google Scholar 

  137. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater 9:043001

    Article  CAS  Google Scholar 

  138. Gao J, He Y, Gao W (2011) Oxidation behavior of gamma-TiAl based alloy with Al2O3–Y2O3 composite coatings prepared by electrophoretic deposition. Surf Coat Technol 205:4453–4458

    Article  CAS  Google Scholar 

  139. Gao J, He Y, Gao W (2012) Electro-codeposition of Al2O3–Y2O3 composite thin film coatings and their high-temperature oxidation resistance on gamma-TiAl alloy. Thin Solid Films 520:2060–2065

    Article  CAS  Google Scholar 

  140. Ma X, He Y, Wang D (2011) Preparation and high-temperature properties of Au nano-particles doped α-Al2O3 composite coating on TiAl-based alloy. Appl Surf Sci 257:10273–10281

    Article  CAS  Google Scholar 

  141. Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Electrolytic plasma technology: science and engineering—an overview. Surf Coat Technol 201:8746–8760

    Article  CAS  Google Scholar 

  142. Yang X, He Y, Wang D, Gao W (2003) Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy. Chin Sci Bull 48:746–750

    Article  CAS  Google Scholar 

  143. Nie X, Meletis EI, Jiang JC, Leyland A, Yerokhin AL, Matthews A (2002) Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf Coat Technol 149:245–251

    Article  CAS  Google Scholar 

  144. Wang P, He Y, Zhang J (2015) Al2O3–ZrO2–Pt composite coatings prepared by cathode plasma electrolytic deposition on the TiAl alloy. Surf Coat Technol 283:37–43

    Article  CAS  Google Scholar 

  145. Wang S, Xie F, Wu X (2017) Mechanism of Al2O3 coating by cathodic plasma electrolytic deposition on TiAl alloy in Al(NO3)3 ethanol-water electrolytes. Mater Chem Phys 202:114–119

    Article  CAS  Google Scholar 

  146. Wang SQ, Xie FQ, Wu XQ, Chen LY (2019) CeO2 doped Al2O3 composite ceramic coatings fabricated on gamma-TiAl alloys via cathodic plasma electrolytic deposition. J Alloys Compd 788:632–638

    Article  CAS  Google Scholar 

  147. Jiang Z, Yang X, Liang Y, Hao G, Zhang H, Lin J (2018) Favorable deposition of gamma-Al2O3 coatings by cathode plasma electrolysis for high-temperature application of Ti–45Al–8.5Nb alloys. Surf Coat Technol 333:187–194

    Article  CAS  Google Scholar 

  148. Yang X, Jiang Z, Hao G, Liang Y, Ding X, Lin J (2018) Ni-doped Al2O3 coatings prepared by cathode plasma electrolysis deposition on Ti–45Al–8.5Nb alloys. Appl Surf Sci 455:144–152

    Article  CAS  Google Scholar 

  149. Yang X, Jiang Z, Ding X, Hao G, Liang Y, Lin J (2018) Influence of solvent and electrical voltage on cathode plasma electrolytic deposition of Al2O3 antioxidation coatings on Ti–45Al–8.5Nb alloys. Metals 8:308

    Article  CAS  Google Scholar 

  150. Byrappa K, Yoshimura M (2012) Handbook of hydrothermal technology. William Andrew, Norwich

    Google Scholar 

  151. Yoshimura M, Yoo S-E, Hayashi M, Ishizawa N (1989) Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn J Appl Phys 28:L2007–L2009

    Article  CAS  Google Scholar 

  152. Yoshimura M, Urushihara W, Yashima M, Kakihana M (1995) CaTiO3 coating on TiAl by hydrothermal-electrochemical technique. Intermetallics 3:125–128

    Article  CAS  Google Scholar 

  153. Woo H, Reucroft PJ, Jacob RJ (1993) Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding. J Adhes Sci Technol 7:681–697

    Article  CAS  Google Scholar 

  154. Shacham R, Avnir D, Mandler D (1999) Electrodeposition of methylated sol–gel films on conducting surfaces. Adv Mater 11:384–388

    Article  CAS  Google Scholar 

  155. Plueddemann E (1991) Silane coupling agents. Springer, New York

    Book  Google Scholar 

  156. Liu L, Mandler D (2015) Sol–gel coatings by electrochemical deposition. In: Levy D, Zayat M (eds) The sol–gel handbook, Wiley, pp 373–414

  157. Goubert-Renaudin S, Etienne M, Rousselin Y, Denat F, Lebeau B, Walcarius A (2009) Cyclam-functionalized silica-modified electrodes for selective determination of Cu(II). Electroanalysis 21:280–289

    Article  CAS  Google Scholar 

  158. Wu L-K, Hu J-M, Zhang J-Q (2012) Electrodeposition of zinc-doped silane films for corrosion protection of mild steels. Corros Sci 59:348–351

    Article  CAS  Google Scholar 

  159. Wu L-K, Zhang X-F, Hu J-M (2014) Corrosion protection of mild steel by one-step electrodeposition of superhydrophobic silica film. Corros Sci 85:482–487

    Article  CAS  Google Scholar 

  160. Wu L-K, Xia J, Cao H-Z, Tang Y-P, Hou G-Y, Zheng G-Q (2017) Highly active and durable cauliflower-like NiCo2O4 film for oxygen evolution with electrodeposited SiO2 as template. Int J Hydrog Energy 42:10813–10825

    Article  CAS  Google Scholar 

  161. Wu L-K, Wu W-Y, Xia J, Cao H-Z, Hou G-Y, Tang Y-P, Zheng G-Q (2017) Nanostructured NiCo@NiCoOx core-shell layer as efficient and robust electrocatalyst for oxygen evolution reaction. Electrochim Acta 254:337–347

    Article  CAS  Google Scholar 

  162. Siab R, Bonnet G, Brossard JM, Dinhut JF (2004) Deposition of yttrium-based thin films on TA6V alloy substrates. Appl Surf Sci 236:50–56

    Article  CAS  Google Scholar 

  163. Siab R, Bonnet G, Brossard JM, Balmain J, Dinhut JF (2007) Effect of an electrodeposited yttrium containing thin film on the high-temperature oxidation behaviour of TA6V alloy. Appl Surf Sci 253:3425–3431

    Article  CAS  Google Scholar 

  164. Wu L-K, Wu W-Y, Song J-L, Hou G-Y, Cao H-Z, Tang Y-P, Zheng G-Q (2018) Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film. Corros Sci 140:388–401

    Article  CAS  Google Scholar 

  165. Wu L-K, Wu J-J, Wu W-Y, Hou G-Y, Cao H-Z, Tang Y-P, Zhang H-B, Zheng G-Q (2019) High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating. Corros Sci 146:18–27

    Article  CAS  Google Scholar 

  166. Wang Q, Wu W-Y, Jiang M-Y, Cao F-H, Wu H-X, Sun D-B, Yu H-Y, Wu L-K (2020) Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating. Surf Coat Technol 381:125126

    Article  CAS  Google Scholar 

  167. Zhang XJ, Li Q, Zhao SY, Gao CX, Wang L, Zhang J (2008) Improvement in the oxidation resistance of a γ-TiAl-based alloy by sol–gel derived Al2O3 film. Appl Surf Sci 255:1860–1864

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51971205), Basic Research Project of Shenzhen Science and Technology Innovation Program, and the Fundamental Research Funds for the Central Universities (19lgpy20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Kui Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LK., Wu, JJ., Wu, WY. et al. Sol–gel-based coatings for oxidation protection of TiAl alloys. J Mater Sci 55, 6330–6351 (2020). https://doi.org/10.1007/s10853-020-04466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04466-0

Navigation