Skip to main content
Log in

Performance of hybrid functional in linear combination of atomic orbitals scheme in predicting electronic response in spinel ferrites ZnFe2O4 and CdFe2O4

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure and hybrid density functional theory (DFT) schemes within linear combination of atomic orbitals (LCAO) have been employed to compute Mulliken population (MP), energy bands, density of states (DOS) and electron momentum densities (EMDs) of TMFe2O4 (TM = Zn and Cd). Pure DFT calculations were performed within local density and generalized gradient approximations, while Hartree–Fock exchange contribution is added to DFT for hybrid calculations (B3LYP and PBE0). To validate the performance of hybrid functionals, we have also performed EMD measurements using 661.65 keV γ-rays from 137Cs source. Chi-square test predicts an overall better agreement of experimental Compton profile data with LCAO–B3LYP scheme-based momentum densities leading to usefulness of hybrid functionals in predicting electronic and magnetic response of such ferrites. Further, LCAO–B3LYP-based majority- and minority-spin energy bands and DOS for ZnFe2O4 and CdFe2O4 predict semiconducting nature in both the compounds. In addition, MP data and equal-valence-electron-density scaled EMDs show more covalent character of ZnFe2O4 than that of CdFe2O4. A reasonable agreement of magnetic moments of both the ferrites with available data unambiguously promotes use of Gaussian-type orbitals in LCAO scheme in exploring magnetic properties of such ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Evans BJ, Hafner SS, Weber HP (1971) Electric field gradients at 57Fe in ZnFe204 and CdFe204. J Chem Phys 55:5282–5288

    Article  CAS  Google Scholar 

  2. Pasquevich AF, Shitu J (1999) PAC study of CdFe2O4 and ZnFe2O4. Hyperfine Interact 120(121):463–468

    Article  Google Scholar 

  3. Cheng C (2008) Long-range antiferromagnetic interactions in ZnFe2O4 and CdFe2O4: density functional theory calculations. Phys Rev B 78:132403-1–132403-4

    Google Scholar 

  4. Cheng C, Liu C-S (2009) Effects of cation distribution in ZnFe2O4 and CdFe2O4: ab initio studies. J Phys Conf Ser 145:012028-1–012208-4

    Article  Google Scholar 

  5. Pénicaud M, Siberchicot B, Sommers CB, Kübler J (1992) Calculated electronic band structure and magnetic moments of ferrites. J Magn Magn Mater 103:212–220

    Article  Google Scholar 

  6. Singh DJ, Gupta M, Gupta R (2001) Density-functional description of spinel ZnFe2O4. Phys Rev B 63:205102–1–205102-5

    Google Scholar 

  7. Yao J, Li X, Li Y, Le S (2013) Density functional theory investigations on the structure and electronic properties of normal spinel ZnFe2O4. Integr Ferroelectr 145:17–23

    Article  CAS  Google Scholar 

  8. Soliman S, Elfalaky A, Fecher GH, Felser C (2011) Electronic structure calculations for ZnFe2O4. Phys Rev B 83:085205-1–085205-6

    Article  Google Scholar 

  9. Schiessl W, Potzel W, Karzel H, Steiner M, Kalvius GM, Martin A, Krause MK, Halevy I, Gal J, Schäfer W, Will G, Hillberg M, Wäppling R (1996) Magnetic properties of the ZnFe2O4 spinel. Phys Rev B 53:9143–9152

    Article  CAS  Google Scholar 

  10. Cross WB, Affleck L, Kuznetsov MV, Parkin IP, Pankhurst QA (1999) Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba Co, Ni, Cu, Zn); reactions in an external magnetic field. J Mater Chem 9:2545–2552

    Article  CAS  Google Scholar 

  11. Rama Krishna K, Ravinder D, Vijaya Kumar K, Abraham Lincon Ch (2012) Synthesis, XRD and SEM studies of zinc substitution in nickel ferrites by citrate gel technique. World J Condens Matter Phys 2:153–159

    Article  Google Scholar 

  12. Quintero JM, Rodríguez KLS, Pasquevich GA, Zélis PM, Stewart SJ, Torres CER, Errico LA (2016) Experimental and ab initio study of the hyperfine parameters of ZnFe2O4 with defects. Hyperfine Interact 237:63-1–63-7

    Article  Google Scholar 

  13. Quintero JJM, Rodríguez KLS, Torres CER, Errico LA (2019) Ab initio study of the role of defects on the magnetic response and the structural, electronic and hyperfine properties of ZnFe2O4. J Alloys Compd 775:1117–1128

    Article  Google Scholar 

  14. Mahmood Q, Yaseen M, Bhamu KC, Mahmood A, Javed Y, Ramay SM (2018) Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme. Chin Phys B 27:037103-1–037103-8

    Article  Google Scholar 

  15. Nikumbh AK, Nagawade AV, Gugale GS, Chaskar MG, Bakare PP (2002) The formation, structural, electrical, magnetic and Mössbauer properties of ferrispinels, Cd1−xNixFe2O4. J Mater Sci 37:637–647

    Article  CAS  Google Scholar 

  16. Kamazawa K, Park S, Lee S-H, Sato TJ, Tsunoda Y (2004) Dissociation of spin objects in geometrically frustrated CdFe2O4. Phys Rev B 70:024418-1–024418-5

    Article  Google Scholar 

  17. Noor S, Rahman MM, Sikder SS, Hakim MA (2011) Effect of Cd substitution on structural and transport properties of Co-ferrites. Jahangirnagar Univ J Sci 34:1–11

    Google Scholar 

  18. Zaari H, El Hachimi AG, Benyoussef A, El Kenz A (2015) Comparative study between TB-mBJ and GGA + U on magnetic and optical properties of CdFe2O4. J Magn Magn Mater 393:183–187

    Article  CAS  Google Scholar 

  19. Cooper MJ, Mijnarends PE, Shiotani N, Sakai N, Bansil A (2004) X-ray Compton scattering. Oxford Science Publications, Oxford University Press, New York (and references therein)

    Book  Google Scholar 

  20. Heda NL, Ahuja BL (2010) Role of in-house Compton spectrometer in probing the electronic properties. In: Ahuja BL (ed) Recent trends in radiation physics research. Himanshu Publications, New Delhi, pp 25–30

    Google Scholar 

  21. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M, Causa M, Neol Y (2014) CRYSTAL14 User’s manual. University of Torino, Torino (and references therein)

    Google Scholar 

  22. Perdew JP, Zunger A (1981) Self-interaction correlation to density functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  23. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406–1–136406-4

    Article  Google Scholar 

  24. Muscat J, Klauber C (2001) A combined ab initio and photoelectron study of galena (PbS). Surf Sci 491:226–238

    Article  CAS  Google Scholar 

  25. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  30. http://www.crystal.unito.it/basis-sets.php. Accessed 3 Sept 2019

  31. Kokalj A (2003) Computer graphics and graphical user interfaces as tool in simulations of matter at the atomic scale. Comput Mater Sci 28:155–168

    Article  CAS  Google Scholar 

  32. Ahuja BL, Sharma M, Mathur S (2006) Anisotropy in the momentum density of tantalum. Nucl Instrum Methods B 244:419–426

    Article  CAS  Google Scholar 

  33. Timms DN (1989) Compton scattering studies of spin and momentum densities. (Unpublished Ph.D. thesis), University of Warwick, UK

  34. Felsteiner J, Pattison P, Cooper MJ (1974) Effect of multiple scattering on experimental Compton profiles: a Monte-Carlo calculation. Philos Magn 30:537–548

    Article  CAS  Google Scholar 

  35. Biggs F, Mendelsohn LB, Mann JB (1975) Hartree–Fock Compton profiles. At Data Nucl Data Tables 16:201–308

    Article  CAS  Google Scholar 

  36. Meena BS, Heda NL, Kumar K, Bhatt S, Mund HS, Ahuja BL (2016) Compton profiles and Mulliken’s populations of cobalt, nickel and copper tungstates: experiment and theory. Phys B 484:1–6

    Article  CAS  Google Scholar 

  37. Meena BS, Heda NL, Mund HS, Ahuja BL (2015) Compton profiles and electronic structure of monoclinic zinc and cadmium tungstates. Radiat Phys Chem 117:93–101

    Article  CAS  Google Scholar 

  38. Meena SK, Heda NL, Arora G, Meena L, Ahuja BL (2019) Performance of hybrid exchange–correlation potential for photocatalytic silver chromate and molybdate: LCAO theory and Compton spectroscopy. Physica B 560:236–243

    Article  CAS  Google Scholar 

  39. Meena SK, Dashora A, Heda NL, Ahuja BL (2019) Compton spectroscopy and electronic structure study for tetragonal barium titanate. Radiat Phys Chem 158:46–52

    Article  CAS  Google Scholar 

  40. Fritsch D (2018) Electronic and optical properties of spinel zinc ferrite: ab initio hybrid functional calculations. J Phys Condens Matter 30:095502-1–095502-5

    Article  Google Scholar 

  41. Valenzuela MA, Bosch P, Jiménez-Becerrill J, Quiroz O, Páez AI (2002) Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J Photochem Photobiol A Chem 148:177–182

    Article  CAS  Google Scholar 

  42. Akamatsu H, Zong Y, Fujiki Y, Kamiya K, Fujita K, Murai S, Tanaka K (2008) Structural and magnetic properties of CdFe2O4 thin films fabricated via sputtering method. IEEE Trans Magn 44:2796–2799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. R. Dovesi and CRYSTAL Support Team for providing CRYSTAL14 software. The work is supported by UGC-DAE-Consortium for Scientific Research, Indore (CSR-IC/BL-03/CSR-100) and Science and Engineering Research Board (SERB), New Delhi (Grant No. EMR/2016/001400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Heda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heda, N.L., Panwar, K., Kumar, K. et al. Performance of hybrid functional in linear combination of atomic orbitals scheme in predicting electronic response in spinel ferrites ZnFe2O4 and CdFe2O4. J Mater Sci 55, 3912–3925 (2020). https://doi.org/10.1007/s10853-019-04289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04289-8

Navigation