Skip to main content
Log in

Highly conductive, flexible and functional multi-channel graphene microtube fabricated by electrospray deposition technique

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly conductive and flexible graphene-based microtubes (μ-GTs) have many potential applications in catalyst supports and wearable electronics. However, there is a lack of effective method to fabricate the high-performance μ-GTs, especially the multi-channel ones. In this work, the electrostatic spray deposition technique was introduced to fabricate the graphene oxide-coated polyester thread from cost-efficient graphene oxide suspensions. After the polyester thread template was removed along with the reduction of graphene oxide by thermal annealing, the multi-channel μ-GT was prepared successfully. Due to the multiple structure of the cross section and the vertically aligned reduced graphene oxide sheets of the tube wall, the multi-channel μ-GT exhibits many excellent properties, such as highly conductive, good flexibility, and functionalization. For example, the electrical conductivity of the multi-channel μ-GT thermally reduced at 1200 °C is about 1.99 × 104 S m−1 at room temperature and can light a LED as a conductive wire. And the electrical conductivity is nearly invariable in either the straight or bent state though a cyclic bending test up to 800 times. In addition, the TiO2/multi-channel μ-GT composite shows strong photocurrent response in which the multi-channel μ-GT provides a super platform due to the high specific surface area. The high-performance μ-GTs obtained by the simple method opens the immense potentials for application in wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  5. Dong Z, Jiang C, Cheng H, Zhao Y, Shi G, Jiang L, Qu L (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861

    Article  Google Scholar 

  6. Jang EY, Carretero-González J, Choi A et al (2012) Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23(23):235601

    Article  Google Scholar 

  7. Xu Z, Gao C (2011) Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2:571

    Article  Google Scholar 

  8. Kwak J, Chu JH, Choi JK et al (2012) Near room-temperature synthesis of transfer-free graphene films. Nat Commun 3:645

    Article  Google Scholar 

  9. Liang M, Wang J, Luo B, Qiu T, Zhi L (2012) High-efficiency and room-temperature reduction of graphene oxide: a facile green approach towards flexible graphene films. Small 8(8):1180–1184

    Article  Google Scholar 

  10. Kim F, Cote LJ, Huang J (2010) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22(17):1954–1958

    Article  Google Scholar 

  11. Li X, Cai W, Jinho A et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  Google Scholar 

  12. Wang G, Sun X, Lu F, Sun H, Yu M, Jiang W, Liu C, Lian J (2012) Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8(3):452–459

    Article  Google Scholar 

  13. Ye X, Zhou Q, Jia C, Tang Z, Zhu Y, Wan Z (2017) Producing large-area, foldable graphene paper from graphite oxide suspensions by in situ chemical reduction process. Carbon 114:424–434

    Article  Google Scholar 

  14. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563

    Article  Google Scholar 

  15. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330

    Article  Google Scholar 

  16. Bi H, Yin K, Xie X et al (2012) Low temperature casting of graphene with high compressive strength. Adv Mater 24(37):5124–5129

    Article  Google Scholar 

  17. Zhao J, Ren W, Cheng HM (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22(38):20197–20202

    Article  Google Scholar 

  18. Xu Z, Sun H, Zhao X, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193

    Article  Google Scholar 

  19. Xiang C, Young CC, Wang X et al (2013) Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater 25(33):4592–4597

    Article  Google Scholar 

  20. Li J, Li J, Li L, Yu M, Ma H, Zhang B (2014) Flexible graphene fibers prepared by chemical reduction-induced self-assembly. J Mater Chem A 2(18):6359–6362

    Article  Google Scholar 

  21. Xin G, Yao T, Sun H et al (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087

    Article  Google Scholar 

  22. Xu Z, Liu Y, Zhao X et al (2016) Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater 28(30):6449–6456

    Article  Google Scholar 

  23. Kim IH, Yun T, Kim JE et al (2018) Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv Mater 30(40):1803267

    Article  Google Scholar 

  24. Ma T, Gao HL, Cong HP et al (2018) A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv Mater 30(15):1706435

    Article  Google Scholar 

  25. Zhang Z, Zhang P, Zhang D, Lin H, Chen Y (2018) A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes. Mater Des 157:170–178

    Article  Google Scholar 

  26. Zhao Y, Jiang C, Hu C et al (2013) Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7(3):2406–2412

    Article  Google Scholar 

  27. Chen T, Dai L (2015) Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew Chem 127(49):15160–15163

    Article  Google Scholar 

  28. Yang J, Weng W, Zhang Y et al (2018) Highly flexible and shape-persistent graphene microtube and its application in supercapacitor. Carbon 126:419–425

    Article  Google Scholar 

  29. Hu C, Zhao Y, Cheng H et al (2012) Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett 12(11):5879–5884

    Article  Google Scholar 

  30. Wang X, Qiu Y, Cao W, Hu P (2015) Highly stretchable and conductive core–sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem Mater 27(20):6969–6975

    Article  Google Scholar 

  31. Tang H, Yang C, Lin Z, Yang Q, Kang F, Wong CP (2015) Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale 7(20):9133–9139

    Article  Google Scholar 

  32. Beidaghi M, Wang Z, Gu L, Wang C (2012) Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. J Solid State Electrochem 16(10):3341–3348

    Article  Google Scholar 

  33. Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N, Borca-Tasciuc T, Lian J (2014) Large-area freestanding graphene paper for superior thermal management. Adv Mater 26(26):4521–4526

    Article  Google Scholar 

  34. Yan J, Leng Y, Guo Y et al (2019) Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by improved electrospray deposition technique. ACS Appl Mater Interfaces 11:10810–10817

    Article  Google Scholar 

  35. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  Google Scholar 

  36. Wu JB, Lin M, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47(5):1822–1873

    Article  Google Scholar 

  37. Díez-Betriu X, Álvarez-García S, Botas C, Álvarez P, Sánchez-Marcos J, Prieto C, Menéndez R, de Andrés A (2013) Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J Mater Chem C 1(41):6905–6912

    Article  Google Scholar 

  38. Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Article  Google Scholar 

  39. Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  Google Scholar 

  40. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir–Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  Google Scholar 

  41. Dai Y, Jing Y, Zeng J et al (2011) Nanocables composed of anatase nanofibers wrapped in uv-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J Mater Chem 21(45):18174–18179

    Article  Google Scholar 

  42. Liang D, Cui C, Hu H et al (2014) One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloys Compd 582:236–240

    Article  Google Scholar 

  43. Zou F, Yu Y, Cao N, Wu L, Zhi J (2011) A novel approach for synthesis of TiO2–graphene nanocomposites and their photoelectrical properties. Scripta Mater 64(7):621–624

    Article  Google Scholar 

  44. Zhang Y, Pan C (2011) TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 46(8):2622–2626. https://doi.org/10.1007/s10853-010-5116-x

    Article  Google Scholar 

  45. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Natural Science Foundation of China (11604173, 51673103 and 11474277), Project of Shandong Province Higher Educational Science and Technology Program (J16LJ07), Project funded by China Postdoctoral Science Foundation (2017M612195), and PT acknowledges support from the Beijing Municipal Science and Technology Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Peng Han.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Li, MF., Yan, JX. et al. Highly conductive, flexible and functional multi-channel graphene microtube fabricated by electrospray deposition technique. J Mater Sci 54, 14378–14387 (2019). https://doi.org/10.1007/s10853-019-03933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03933-7

Navigation