Skip to main content

Advertisement

Log in

Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The commercialization of cellulose nanofibrils (CNF) is limited due to the high energy consumed during production. Twin-screw extrusion has recently been employed for the energy-efficient production of CNF with high solid content, but the method requires several passes. Cellulose nanofibrils have been produced by using both a twin-screw extruder and a homogenizer. Some combinations require a fewer number of passes thereby using less energy, while maintaining the desired CNF quality. The morphology and quality of CNF were characterized by optical microscopy, MorFi analysis, and with a recently developed quality index. The combination of one pass through the twin-screw extruder and two passes through the homogenizer decreases energy consumption by 45%. These CNF have a similar quality to CNF produced after five passes through the homogenizer alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    Google Scholar 

  2. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806. https://doi.org/10.1002/polb.23490

    Article  Google Scholar 

  3. Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    Article  Google Scholar 

  4. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. https://doi.org/10.1039/C6NR03054H

    Article  Google Scholar 

  5. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294. https://doi.org/10.1039/c2nr30260h

    Article  Google Scholar 

  6. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. https://doi.org/10.1002/app.41719

    Google Scholar 

  7. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/C0NR00583E

    Article  Google Scholar 

  8. Saini S, Yücel Falco Ç, Belgacem MN, Bras J (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135:239–247. https://doi.org/10.1016/j.carbpol.2015.09.002

    Article  Google Scholar 

  9. Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232. https://doi.org/10.1016/j.carbpol.2015.06.003

    Article  Google Scholar 

  10. He H, Chen J, Wang SF et al (2011) Preparation of cationic cellulose obtained from wood pulp using the microwave. Adv Mater Res 295–297:734–737. https://doi.org/10.4028/www.scientific.net/AMR.295-297.734

    Article  Google Scholar 

  11. Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410. https://doi.org/10.1021/acs.biomac.5b01117

    Article  Google Scholar 

  12. Naderi A, Lindström T, Weise CF, Flodberg G, Sundström J, Junel K, Erlandsson J, Runebjörk A (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:020–029. https://doi.org/10.3183/NPPRJ-2016-31-01-p020-029

    Article  Google Scholar 

  13. Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305. https://doi.org/10.1007/s10570-017-1191-3

    Article  Google Scholar 

  14. Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z

    Article  Google Scholar 

  15. Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29:167–175. https://doi.org/10.3183/NPPRJ-2014-29-01-p167-175

    Article  Google Scholar 

  16. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanoparticle Res 16:2349. https://doi.org/10.1007/s11051-014-2349-7

    Article  Google Scholar 

  17. Eriksen Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304. https://doi.org/10.3183/NPPRJ-2008-23-03-p299-304

    Article  Google Scholar 

  18. Naderi A, Lindström T, Erlandsson J et al (2016) A comparative study of the properties of three nano-fibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord Pulp Pap Res J 31:364–371. https://doi.org/10.3183/NPPRJ-2016-31-03-p364-371

    Article  Google Scholar 

  19. Tejado A, Alam MN, Antal M et al (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842. https://doi.org/10.1007/s10570-012-9694-4

    Article  Google Scholar 

  20. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  Google Scholar 

  21. Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. https://doi.org/10.1021/bm061215p

    Article  Google Scholar 

  22. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

    Article  Google Scholar 

  23. Correia VC, dos Santos V, Sain M et al (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23:2971–2987. https://doi.org/10.1007/s10570-016-0996-9

    Article  Google Scholar 

  24. Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J Appl Polym Sci 126:E449–E458. https://doi.org/10.1002/app.36787

    Article  Google Scholar 

  25. Taipale T, Österberg M, Nykänen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. https://doi.org/10.1007/s10570-010-9431-9

    Article  Google Scholar 

  26. Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23:1221–1238. https://doi.org/10.1007/s10570-016-0866-5

    Article  Google Scholar 

  27. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761. https://doi.org/10.1002/adem.200400097

    Article  Google Scholar 

  28. Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283. https://doi.org/10.1016/S0268-005X(98)00084-8

    Article  Google Scholar 

  29. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466. https://doi.org/10.1007/s00339-007-4175-6

    Article  Google Scholar 

  30. Leitner J, Hinterstoisser B, Wastyn M et al (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425. https://doi.org/10.1007/s10570-007-9131-2

    Article  Google Scholar 

  31. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112. https://doi.org/10.1007/s00339-005-3316-z

    Article  Google Scholar 

  32. Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157. https://doi.org/10.1007/s10570-015-0576-4

    Article  Google Scholar 

  33. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552. https://doi.org/10.1007/s00339-003-2453-5

    Article  Google Scholar 

  34. Kekäläinen K, Liimatainen H, Biale F, Niinimäki J (2015) Nanofibrillation of TEMPO-oxidized bleached hardwood kraft cellulose at high solids content. Holzforschung 69:1077–1088. https://doi.org/10.1515/hf-2014-0269

    Article  Google Scholar 

  35. Phanthong P, Karnjanakom S, Reubroycharoen P et al (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093. https://doi.org/10.1007/s10570-017-1238-5

    Article  Google Scholar 

  36. Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1194. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V

    Article  Google Scholar 

  37. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89. https://doi.org/10.1007/s10443-006-9032-9

    Article  Google Scholar 

  38. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268. https://doi.org/10.1177/0731684405049864

    Article  Google Scholar 

  39. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  Google Scholar 

  40. Santucci BS, Bras J, Belgacem MN et al (2016) Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind Crops Prod 91:238–248. https://doi.org/10.1016/j.indcrop.2016.07.017

    Article  Google Scholar 

  41. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113:1270–1275. https://doi.org/10.1002/app.30072

    Article  Google Scholar 

  42. Cherian BM, Leão AL, de Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. https://doi.org/10.1016/j.carbpol.2010.03.046

    Article  Google Scholar 

  43. Deepa B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030

    Article  Google Scholar 

  44. Ho TTT, Abe K, Zimmermann T, Yano H (2014) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433. https://doi.org/10.1007/s10570-014-0518-6

    Article  Google Scholar 

  45. Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b02673

    Google Scholar 

  46. Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilot scale twin screw extrusion and chemical pretreatment as an energy efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b00630

    Google Scholar 

  47. Heiskanen I, Harlin A, Backfolk K, Laitinen R (2011) Process for production of microfibrillated cellulose in an extruder and microfibrillated cellulose produced according to the process

  48. Eymin Petot Tourtollet G, Cottin F, Cochaux A, Petit-Conil M (2003) The use of MorFi analyser to characterise mechanical pulps

  49. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

    Article  Google Scholar 

  50. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. https://doi.org/10.1016/j.carbpol.2009.10.045

    Article  Google Scholar 

  51. Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10:2360–2375. https://doi.org/10.15376/biores.10.2.2360-2375

    Article  Google Scholar 

  52. Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. https://doi.org/10.1002/adma.200400597

    Article  Google Scholar 

  53. Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541. https://doi.org/10.1007/s10853-014-8609-1

    Article  Google Scholar 

  54. Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. https://doi.org/10.1007/s10570-010-9449-z

    Article  Google Scholar 

  55. Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  Google Scholar 

  56. Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339. https://doi.org/10.1039/c1gc15103g

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Institut Carnot Polynat (Grant agreement No. ANR-16-CARN-0025-01), Centre Technique du Papier (Grenoble, France) and LabEx Tec 21 (Grant agreement No. ANR-11-LABX-0030). This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). LGP2 is part of CDP Glyco@Alps (ANR-15-IDEX-02). Authors want to thank Denis Curtil from Grenoble INP Pagora for the refining step and François Cottin from CTP for the homogenization step.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Ethics declarations

Conflict of interest

The authors declare that the contents have no conflict of interest toward any individual or organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rol, F., Banvillet, G., Meyer, V. et al. Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J Mater Sci 53, 12604–12615 (2018). https://doi.org/10.1007/s10853-018-2414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2414-1

Keywords

Navigation