Skip to main content
Log in

Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Light materials with high thermal conductivity and low thermal expansion have a wide application potential for the thermal management of high-performance electronics, in particular in mobile and aerospace applications. We present here metal matrix composites with a mixture of graphite flakes and pitch-based carbon fibres as filler. The production by spark plasma sintering orients the filler particles on to a plane perpendicular to the pressing axis. The obtained materials have lower density than aluminium combined with a thermal conductivity significantly outperforming the used metal matrix. Depending on the ratio of the filler components, a low thermal expansion along the pressing direction (high graphite flakes content) or across the pressing direction (high carbon fibre content) is achieved. For a 1:3 ratio of carbon fibres to graphite, we measured an isotropic reduction of the thermal expansion of the matrix by up to 55%. We present a detailed characterisation of composites with two aluminium alloys as matrix and an overview of the properties for six different metal matrices including magnesium and copper. With the goal of a technical application, we show that the described properties are intrinsic to the material compositions and are achieved with a wide spectrum of production methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Carlson RO, Glascock HH, Webster HF, Neugebauer CA (1984) Thermal expansion mismatch in electronic packaging. In: MRS Proceedings, Cambridge University Press, p 177

  2. Chung DDL (1995) Materials for electronic packaging. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  3. Rawal S (2001) Metal–matrix composites for space applications. JOM J Miner Met Mater Soc 53:14–17. https://doi.org/10.1007/s11837-001-0139-z

    Article  Google Scholar 

  4. Cornie JA, Zhang S, Desberg R, Ryals M (2003) Discontinuous graphite reinforced aluminum, and copper alloys for high thermal conductivity-thermal expansion matched thermal management applications. Met Matrix Compos LLC 1:1–7

    Google Scholar 

  5. Chen JK, Huang IS (2013) Thermal properties of aluminum–graphite composites by powder metallurgy. Compos B Eng 44:698–703. https://doi.org/10.1016/j.compositesb.2012.01.083

    Article  Google Scholar 

  6. Etter T, Papakyriacou M, Schulz P, Uggowitzer PJ (2003) Physical properties of graphite/aluminium composites produced by gas pressure infiltration method. Carbon N Y 41:1017–1024. https://doi.org/10.1016/S0008-6223(02)00448-7

    Article  Google Scholar 

  7. Hutsch T, Schubert T, Schmidt J et al (2010) Innovative metal–graphite composites as thermally conducting materials. In: Proceedings Powder Metallurgy World Congress Exhibition PM2010, pp 361–368

  8. Fukushima H (2010) High-thermal-conductivity graphite-particles-dispersed-composite and its production method. US Patent 7,851,055, 14 Dec 2010

  9. Boden A, Boerner B, Kusch P et al (2014) Nanoplatelet size to control the alignment and thermal conductivity in copper–graphite composites. Nano Lett 14:3640–3644. https://doi.org/10.1021/nl501411g

    Article  Google Scholar 

  10. Firkowska I, Boden A, Boerner B, Reich S (2015) The origin of high thermal conductivity and ultralow thermal expansion in copper–graphite composites. Nano Lett 15:4745–4751. https://doi.org/10.1021/acs.nanolett.5b01664

    Article  Google Scholar 

  11. Oddone V, Boerner B, Reich S (2017) Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater 18:180–186. https://doi.org/10.1080/14686996.2017.1286222

    Article  Google Scholar 

  12. Bai H, Xue C, Lyu J et al (2018) Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface. Compos A 106:42–51. https://doi.org/10.1016/j.matdes.2016.06.122

    Article  Google Scholar 

  13. Korb G, Koráb J, Groboth G (1998) Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper–matrix composites. Compos A 29:1563–1567. https://doi.org/10.1016/S1359-835X(98)00066-9

    Article  Google Scholar 

  14. Koráb J, Štefánik P, Kavecký Š et al (2002) Thermal conductivity of unidirectional copper matrix carbon fibre composites. Compos A 33:577–581. https://doi.org/10.1016/S1359-835X(02)00003-9

    Article  Google Scholar 

  15. Silvain J-F, Veillère A, Lu Y (2014) Copper–carbon and aluminum–carbon composites fabricated by powder metallurgy processes. J Phys Conf Ser 525:12015. https://doi.org/10.1088/1742-6596/525/1/012015

    Article  Google Scholar 

  16. Oddone V, Reich S (2017) Thermal properties of metal matrix composites with planar distribution of carbon fibres. Phys Status Solidi Rapid Res Lett 1700090:1700090. https://doi.org/10.1002/pssr.201700090

    Article  Google Scholar 

  17. Jagannadham K (2011) Orientation dependence of thermal conductivity in copper–graphene composites. J Appl Phys 110:74901. https://doi.org/10.1063/1.3641640

    Article  Google Scholar 

  18. Cho J, Chen JY, Daniel IM (2007) Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scr Mater 56:685–688

    Article  Google Scholar 

  19. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341

    Article  Google Scholar 

  20. Thongruang W, Spontak RJ, Balik CM (2002) Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer (Guildf) 43:2279–2286

    Article  Google Scholar 

  21. Prieto R, Molina JM, Narciso J, Louis E (2008) Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scr Mater 59:11–14. https://doi.org/10.1016/j.scriptamat.2008.02.026

    Article  Google Scholar 

  22. Dresselhaus M, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, Elsevier, London

  23. Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. J Miner Met Mater Soc 57:52–58. https://doi.org/10.1007/s11837-005-0217-8

    Article  Google Scholar 

  24. Muhammad WNAW, Sajuri Z, Mutoh Y, Miyashita Y (2011) Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J Alloys Compd 509:6021–6029. https://doi.org/10.1016/j.jallcom.2011.02.153

    Article  Google Scholar 

  25. Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Effects of heating rate and particle size on pulse electric current sintering of alumina. Scr Mater 48:1631–1636

    Article  Google Scholar 

  26. Olevsky EA, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102:114913

    Article  Google Scholar 

  27. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  Google Scholar 

  28. Donaldson AB, Taylor RE (1975) Thermal diffusivity measurement by a radial heat flow method. J Appl Phys 46:4584–4589

    Article  Google Scholar 

  29. Segl J, Edtmaier C, Rosenberg E (2016) Influence of processing parameters on the thermal conductivity behavior in Al-diamond MMCs. In: World PM2016, pp 1–7

  30. Wolff M, Ebel T, Dahms M (2010) Sintering of magnesium. Adv Eng Mater 12:829–836. https://doi.org/10.1002/adem.201000038

    Article  Google Scholar 

  31. Buerschaper RA (1944) Thermal and electrical conductivity of graphite and carbon at low temperatures. J Appl Phys 15:452–454

    Article  Google Scholar 

  32. Zahra AM, Zahra CY, Jaroma-Weiland G et al (1995) Heat capacities of aluminium alloys. J Mater Sci 30:426–436. https://doi.org/10.1007/BF00354407

    Article  Google Scholar 

  33. Mounet N, Marzari N (2004) High-accuracy first-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives. https://doi.org/10.1103/physrevb.71.205214

  34. Ueno T, Yoshioka T, Ogawa J et al (2009) Highly thermal conductive metal/carbon composites by pulsed electric current sintering. Synth Met 159:2170–2172. https://doi.org/10.1016/j.synthmet.2009.10.006

    Article  Google Scholar 

  35. Daoud A (2004) Wear performance of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater Lett 58:3206–3213. https://doi.org/10.1016/j.matlet.2004.06.012

    Article  Google Scholar 

  36. Kwon H, Estili M, Takagi K et al (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon N Y 47:570–577. https://doi.org/10.1016/j.carbon.2008.10.041

    Article  Google Scholar 

  37. Etter T, Schulz P, Weber M et al (2007) Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A 448:1–6. https://doi.org/10.1016/j.msea.2006.11.088

    Article  Google Scholar 

  38. Monje IE, Louis E, Molina JM (2013) Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Compos A Appl Sci Manuf 48:9–14. https://doi.org/10.1016/j.compositesa.2012.12.010

    Article  Google Scholar 

Download references

Acknowledgements

VO acknowledges the Evonik Foundation for the financial support. We acknowledge M. Wolff from the Helmoltz-Zentrum Geesthacht for providing the Mg–0.9Ca powders, Ecka Granules GmbH for the aluminium powders and the Nippon Graphite Fiber Corporation for the carbon fibres. We thank P. Leibner from the Max Planck Institute of Colloids and Interfaces for use of their equipment for tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Oddone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oddone, V., Segl, J., Prakasam, M. et al. Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite. J Mater Sci 53, 10910–10919 (2018). https://doi.org/10.1007/s10853-018-2373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2373-6

Keywords

Navigation