Skip to main content
Log in

Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dopamine (DA), a biological neurotransmitter which has a similar structure to the essential adhesive component of mussel protein, was here used to modify polyaniline (PANI) via a one-step chemical oxidization method. The as-fabricated DA-PANI resulted from different DA to aniline (An) mole ratio showed different morphology. Compared to pure PANI, the modified PANI exhibited greatly enhanced adhesion force to the substrate. In addition, the biocompatibility and dispersibility of DA-modified PANI were also significantly improved compared with pure PANI. More importantly, the incorporation of poor conductive PDA did not enormously weaken the electrical conductivity of PANI, and it still showed good electrical conductivity as the DA/An mole ratio was not higher than 0.48.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Huang S, Liang N, Hu Y, Zhou X, Abidi N (2016) Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Res Int 2016:2389895

    Google Scholar 

  2. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  Google Scholar 

  3. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127:15843–15847

    Article  Google Scholar 

  4. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  Google Scholar 

  5. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  Google Scholar 

  6. Son EJ, Kim JH, Kim K, Park CB (2016) Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A 4:11179–11202

    Article  Google Scholar 

  7. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359

    Article  Google Scholar 

  8. Tian J, Deng SY, Li DL, Shan D, He W, Zhang XJ, Shi Y (2013) Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application. Biosens Bioelectron 49:466–471

    Article  Google Scholar 

  9. Kim JH, Lee M, Park CB (2014) Inside cover: polydopamine as a biomimetic electron gate for artificial photosynthesis (Angew. Chem. Int. Ed. 25/2014). Angewandte Chemie 53:6364–6368

    Article  Google Scholar 

  10. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interf 5:425–433

    Article  Google Scholar 

  11. Zhang W, Yang FK, Pan ZH, Zhang J, Zhao BX (2014) Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity. Macromol Rapid Commun 35:350–354

    Article  Google Scholar 

  12. Zhang W, Pan Z, Yang FK, Zhao B (2015) A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv Func Mater 25:1588–1597

    Article  Google Scholar 

  13. Kim S, Jang LK, Park HS, Lee JY (2016) Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Scientific Rep 6:30475

    Article  Google Scholar 

  14. Wang Z, Zhou L, Yu P, Liu Y, Chen J, Liao J, Li W, Chen W, Zhou W, Yi X, Ouyang K, Zhou Z, Tan G, Ning C (2016) Polydopamine-assisted electrochemical fabrication of polypyrrole nanofibers on bone implants to improve bioactivity. Macromol Mater Eng 301:1288–1294

    Article  Google Scholar 

  15. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409

    Article  Google Scholar 

  16. Oh W-K, Kwon OS, Jang J (2013) Conducting polymer nanomaterials for biomedical applications: cellular interfacing and biosensing. Polym Rev 53:407–442

    Article  Google Scholar 

  17. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Article  Google Scholar 

  18. Llorens E, Armelin E, del Mar Pérez-Madrigal M, del Valle L, Alemán C, Puiggalí J (2013) Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 5:1115–1157

    Article  Google Scholar 

  19. Borriello A, Guarino V, Schiavo L, Alvarezperez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 22:1053–1062

    Article  Google Scholar 

  20. Zhang QS, Yan YH, Li SP, Feng T (2009) Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed Mater 4:035008

    Article  Google Scholar 

  21. Huang L, Zhuang X, Hu J (2008) Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules 9:850–858

    Article  Google Scholar 

  22. Qazi TH, Rai R, Boccaccini AR (2014) Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35:9068–9086

    Article  Google Scholar 

  23. Yu QZ, Shi MM, Deng M, Wang M, Chen HZ (2008) Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning. Mater Sci Eng, B 150:70–76

    Article  Google Scholar 

  24. Li F, Yang L, Zhao C, Du Z (2011) Electroactive gold nanoparticles/polyaniline/polydopamine hybrid composite in neutral solution as high-performance sensing platform. Anal Methods 3:1601–1607

    Article  Google Scholar 

  25. Mihai I, Addiégo F, Del Frari D, Bour J, Ball V (2013) Associating oriented polyaniline and eumelanin in a reactive layer-by-layer manner: composites with high electrical conductivity. Colloids Surf, A 434:118–125

    Article  Google Scholar 

  26. Moon IJ, Kim MW, Choi HJ, Kim N, You C-Y (2016) Fabrication of dopamine grafted polyaniline/carbonyl iron core-shell typed microspheres and their magnetorheology. Colloids Surf, A 500:137–145

    Article  Google Scholar 

  27. Wang H-B, Zhang H-D, Jiang Y-L, Li X-L, Liu Y-M (2015) Determination of adenine and guanine by a dopamine-melanin nanosphere-polyaniline nanocomposite modified glassy carbon electrode. Anal Lett 49:226–235

    Article  Google Scholar 

  28. Wang X, Lee PS (2015) A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte. J Mater Res 30:3575–3583

    Article  Google Scholar 

  29. Xie C, Li P, Han L, Wang Z, Zhou T, Deng W, Wang K, Lu X (2017) Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Mater 9:e358

    Article  Google Scholar 

  30. Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity. Colloids Surf B Biointerfaces 103:9–14

    Article  Google Scholar 

  31. Boomi P, Prabu HG, Mathiyarasu J (2014) Synthesis, characterization and antibacterial activity of polyaniline/Pt-Pd nanocomposite. Eur J Med Chem 72:18–25

    Article  Google Scholar 

  32. Eisa WH, Zayed MF, Abdel-Moneam YK, Zeid AMA (2014) Water-soluble gold/polyaniline core/shell nanocomposite: synthesis and characterization. Synth Met 195:23–28

    Article  Google Scholar 

  33. Shabana S, Sonawane SH, Ranganathan V, Pujjalwar PH, Pinjari DV, Bhanvase BA, Gogate PR, Ashokkumar M (2017) Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate. Ultrason Sonochem 36:59–69

    Article  Google Scholar 

  34. Wang J, Zhang K, Zhao L (2014) Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): effect of protonic acids. Chem Eng J 239:123–131

    Article  Google Scholar 

  35. DE Medeiros DSDSDWO, Dantas TNC, Perira MR, Giacometi JA, Fonseca JLC (2003) Zeta potential and doping in polyaniline dispersions. Mater Sci 21:251–258

    Google Scholar 

  36. Jastrzebska MM, Isotalo H, Paloheimo J, Stubb H (1996) Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures. J Biomater Sci Polym Ed 7:577–586

    Article  Google Scholar 

  37. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  Google Scholar 

  38. Bidez PR, Li S, MacDiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17:199–212

    Article  Google Scholar 

  39. Gilmore KJ, Kita M, Han Y, Gelmi A, Higgins MJ, Moulton SE, Clark GM, Kapsa R, Wallace GG (2009) Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 30:5292–5304

    Article  Google Scholar 

  40. Guo Y, Li M, Mylonakis A, Han J, Macdiarmid AG, Chen X, Lelkes PI, Wei Y (2007) Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromolecules 8:3025–3034

    Article  Google Scholar 

  41. Humpolicek P, Kasparkova V, Saha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162:722–727

    Article  Google Scholar 

  42. Zhang W, Zhou YK, Feng K, Trinidad J, Yu AP, Zhao BX (2015) Morphologically controlled bioinspired dopamine-polypyrrole nanostructures with tunable electrical properties. Adv Electron Mater 1:205–214

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (31271009, 81271689), the Fundamental Research Funds for the Central Universities (No. 2011121001), the Program for New Century Excellent Talents in University, and the Program for New Century Excellent Talents in Fujian Province University and the Xiamen Municipal Science and Technology project (3502Z20144026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Zhang or Dongtao Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Xie, Z., Zhang, Z. et al. Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility. J Mater Sci 53, 447–455 (2018). https://doi.org/10.1007/s10853-017-1520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1520-9

Keywords

Navigation