Skip to main content

Advertisement

Log in

Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: preparation, characterization, mathematical modeling and release tests in field trial weed control

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of herbicides is important to eliminate losses of weed interference on crops. However, excessive and inappropriate employment of these substances can cause serious consequences to the environment. In this way, the release system is very attractive for the weed control in the agriculture area. The aim of this work was to study a new delivery system for sulfentrazone herbicide encapsulated into the calcium alginate (Ca-ALG) microparticles for the weed control. The alginate microparticles were prepared via ionotropic gelation method and characterized by using optical microscopy, scanning electron microscopy, and thermogravimetric and differential thermal analysis. The controlled release (M t /M vs. time) of the sulfentrazone herbicide was also analyzed using UV–Vis spectroscopy where we proposed different mathematical models to understand the mechanisms of controlled release of the herbicide. Furthermore, the release tests in field trial weed control were conducted using bioindicator species (Cucumis Sativus—Cucumber) to study the phytotoxicity evaluation caused by the Ca-ALG microparticles at different concentrations and their relationship with leaching depth. The results showed that the Ca-ALG microparticles exhibited good encapsulation efficiency (%EE): 76.11, 78.62, and 80.42% for the 4, 5 and 6 g L−1 concentration of herbicide. The release rates in the region I were 39.2, 46.5, and 35.5 mg s−1 for the 4, 5, and 6 g L−1 of herbicide concentration, respectively. The Ca-ALG microparticles containing sulfentrazone herbicide demonstrated potential application in controlled release platforms in agricultural as well as for controlling of weeds and minimization of leaching processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Katz H, Mishael YG (2014) Reduced herbicide leaching by in situ adsorption of herbicide micelle formulations to soil. J Agric Food Chem 52:50–57

    Article  Google Scholar 

  2. Singh B, Sharma DK, Kumar R et al (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45:76–82

    Article  Google Scholar 

  3. Nayak AK, Pal D, Santra K (2016) Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide—alginate beads. Int J Biol Macromol 82:1023–1027

    Article  Google Scholar 

  4. Nir S, Nahhal EL, Undabeytia T et al (2006) Clays and pesticides. Handb Clay Sci 1:677–691

    Article  Google Scholar 

  5. Carter AD (2000) Herbicide movement in soils: principles, pathways and processes. Weed Res 40:113–122

    Article  Google Scholar 

  6. Rice PJ, Anderson TA, Coats JR (2002) Degradation and persistence of metolachlor in soil: effects of concentration, soil moisture, soil depth, and sterilization. Environ Toxicol Chem 21:2640–2648

    Article  Google Scholar 

  7. Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14

    Article  Google Scholar 

  8. Martinez CO, Souza Filho CMM, Fay EF et al (2008) The effects of moisture and temperature on the degradation sulfentrazone. Geoderma 147:56–62

    Article  Google Scholar 

  9. Theodoridis G, Baum JS, Hotzman FW (1992) Synthesis and herbicidal properties of aryltriazolinones. A new class of pre and pos-emergence herbicide. In: Baker DR, Fenyes JG and Steffens JJ (eds) Synthesis and chemistry of agrochemicals III, ACS symposium series, pp 13115–13146

  10. Belfry KD, Mcnaughton KE, Sikkema PH (2015) Weed control in soybean using pyroxasulfone and sulfentrazone. Can J Plant Sci 95:1199–1204

    Article  Google Scholar 

  11. Carbonari CA, Gomes GLGC, Trindade MLB et al (2016) Dynamics of sulfentrazone applied to sugarcane crop residues. Weed Sci 64:201–206

    Article  Google Scholar 

  12. Duart VM, Duart AM, Tramontin MT, Spannemberg R et al (2013) Controle pré-emergente de plantas daninhas em sistema de sameadura de arroz em solo seco. 2º Simpósio de Integração Científica e Tecnológica do Sul Catarinense—SICT—Sul, pp 49–54

  13. Tanabe A, Mitobe H, Kawata K et al (2001) Seasonal and special studies on pesticides residues in surface eaters of the Shinano River in Japan. J Agric Food Chem 49:3847–3852

    Article  Google Scholar 

  14. El BahrI Z, TaverdeT J-L (2007) Elaboration and characterisation of microparticles loaded by pesticide model. Powder Technol 172:30–40

    Article  Google Scholar 

  15. Grillo R, Pereira AES, de Melo NFS et al (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186:1645–1651

    Article  Google Scholar 

  16. Dias FS, Queiroz DC, Nascimento RF, Lima MB (2008) Um sistema simples para preparação de microesferas de quitosana. Quim Nova 31:160–163

    Article  Google Scholar 

  17. Shi LES, Chen M, Xinf LY, Guo XF, Zhao LM (2011) Chitosan nanoparticles as drug delivery carriers for biomedical engineering. J Chem Soc Pak 33:929–934

    Google Scholar 

  18. Faria DM (2016) Obtenção de micropartículas de alginato para liberação controlada do herbicida Tebuthiuron. Disssertação (Mestrado em Agroquímica), Instituto Federal de Educação, Ciência e Tecnologia Goiano, IF Goiano, GO, Brazil

  19. Sociedade Brasileira da Ciência das Plantas Daninhas (1995) Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. SBCPD, Londrina

    Google Scholar 

  20. Pimentel-Gomes F (1976) Curso de estatística experimental, 6th edn. Gráfica Binetti, Piracicaba, p 430

    Google Scholar 

  21. Rajamani T, Muthu S, Karabacak M (2013) Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods. Spectrochim Acta A Mol Biomol Spectrosc 108:186–196

    Article  Google Scholar 

  22. Villafranca-Sánches M, Flores-céspedes F, Daza-Fernández et al (2011) Prevention of herbicides pollution using sorbents in controlled release formulations. In: Andreas Kortekamp (ed) Herbicides and environment, p 157–172, https://www.intechopen.com/books/herbicides-and-environment/prevention-of-herbicides-pollution-using-sorbents-in-controlled-release-formulations

  23. Tsirigotis-Maniecka M, Roman G, Wilk KA (2016) Preparation and characterization of sodium alginate/chitosan microparticles containing esculin. Colloids Surf A Physicochem Eng Asp 510:22–32

    Article  Google Scholar 

  24. Lacerda L, Parize AL, Fávere V et al (2014) Development of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug refampicin. Mater Sci Eng C 39:161–167

    Article  Google Scholar 

  25. Faria DM, Dourado Júnior SM, Nascimento JPL et al (2016) Development and evaluation of a controlled release system of TBH herbicide using alginate microparticles. Mat Res 20(1):225–235

    Article  Google Scholar 

  26. Rodrigues BN, Almeida FS (2005) Guia de herbicidas, 5th edn. Londrina, Edição dos Autores, p 592

    Google Scholar 

  27. Siepmann J, Siepmann F (2006) Microparticles used as drug delivery systems. Smart Colloidal Mater 133:15–21

    Article  Google Scholar 

  28. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Controll Release 73:121–136

    Article  Google Scholar 

  29. Siepmann J, Faisant N, Benoit JP (2002) A new mathematical model quantifying drug release from bio erodible microparticles using Monte Carlo simulations. Pharm Res 19:1885–1893

    Article  Google Scholar 

  30. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  Google Scholar 

  31. Carbinatto FM, Castro AD, Evangelista RC et al (2014) Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci 9:27–34

    Article  Google Scholar 

  32. Cojocaru V, Ranetti AE, Hinescu LG et al (2015) Formulation and evaluation of in vitro release kinetics of Na3CaDTPA decorporation agent embedded in microemulsion-based gel formulation for topical delivery. Farmacia 63:656–664

    Google Scholar 

  33. Suvakanta D, Padala NM, Lilakanta N et al (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm Drug Res 67:217–223

    Google Scholar 

  34. Yao F, Weiyuan JK (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444

    Article  Google Scholar 

  35. Wilson A, Blenner M, Guiseppi-Elie A (2014) Polyplex formation influences release mechanism of mono- and di-valent ions from phosphorylcholine group bearing hydrogels. Polymers 6:2451–2472

    Article  Google Scholar 

  36. ASOCIACIÓN LATINOAMERICANA DE MALEZAS—ALAM (1974) Recomendaciones sobre unificación de los sistemas de evaluación en ensayos de control de malezas. ALAM 1(1):35–38

  37. Barberis LRM, Trindade MLB, Velini ED (2009) Seleção de genótipos de cana-de-açúcar para acúmulo de protoporfirina IX com uso de herbicidas inibidores da protox. Planta Daninha 27:809–814

    Article  Google Scholar 

  38. Ferreira FA, Silva AA, Ferreira LR (2005). Mecanismos de ação de herbicidas. In: Congresso Brasileiro do Algodão, p 5, Salvador. Algodão, uma fibra natural: Anais... Campina Grande: Embrapa Algodão, 2005. 1 CD-ROM

  39. Roman ES, Beckie H, Vargas L, Hall L et al (2007) Berthier: Como funcionam os herbicidas: Da biologia à aplicação, Passo Fundo, p 159

  40. Takahashi EM, Alves LCA, Salgado TP et al (2009) Consequências da deriva de clomazone e sulfentrazone em clones de E. Grandis × E. Urophylla. Rev Árvore 33:675–683

    Article  Google Scholar 

  41. Oliveira Júnior RS, Constantin J, Inou MH (2011) Biologia e manejo de plantas daninhas, Omnipax, pp 263–304

  42. Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234

    Google Scholar 

  43. Mandhun YA, Young JL, Freed VH (1986) Binding of herbicides by water-soluble organic materials from soil. J Environ Qual 15:64–68

    Article  Google Scholar 

  44. Senesi N, Brunetti G, La Cava P (1994) Adsorption of alachlor by humic acids from sewage and amended and nonamended soils. Soil Sci 157:176–184

    Article  Google Scholar 

  45. Nicholls PH (1988) Factors influencing entry of pesticides into soil water. Pest Sci 22:123–137

    Article  Google Scholar 

  46. Monqueiro PA, Silva AC, Binha DP et al (2008) Mobilidade e persistência de herbicidas aplicados em pré-emergência em diferentes solos. Planta Daninha 26:411–417

    Article  Google Scholar 

  47. Freitas MAM, Passos ABRJ, Torres LG et al (2014) Sulfentrazone sorption in different types of soil by bioassays. Planta Daninha 32:385–392

    Article  Google Scholar 

  48. Oliveira RS, Koskinen WC, Ferreira FA (2002) Sorption and leachig potential of herbicides on Brazilian soils. Weed Res 41:97–110

    Article  Google Scholar 

  49. Silva MRA, Trovó AG, Nogueira RFP (2007) Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. J Photochem Photobiol A 191:187–192

    Article  Google Scholar 

  50. Rodrigues BN, Lima J, Yada IFU et al (1999) Influência da cobertura morta no comportamento do herbicida sulfentrazone. Planta Daninha 17:445–458

    Article  Google Scholar 

  51. Rossi CVS, Alves PLCA, Marques Júnior J (2005) Mobilidade do sulfentrazone em Latossolo Vermelho e em Chernossolo. Planta Daninha 23:701–710

    Article  Google Scholar 

  52. Faustino LA, Freitas MAM, Passos ABRJ et al (2016) Mobility of sulfentrazone in soils with different physical and chemical characteristics. Planta Daninha 33:795–802

    Article  Google Scholar 

  53. Braga DF, Melo VC (2016) Leaching of sulfentrazone in soils from the sugarcane region in the northeast region of Brazil. Planta Daninha 34:161–169

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Laboratory of Plasma Technology/LaPTec—State University of São Paulo—UNESP, Federal University of Mato Grosso—UFMT for providing the laboratories facilities, FAPEG and FAPEMIG. The research was financially supported by CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Dourado Junior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourado Junior, S.M., Nunes, E.S., Marques, R.P. et al. Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: preparation, characterization, mathematical modeling and release tests in field trial weed control. J Mater Sci 52, 9491–9507 (2017). https://doi.org/10.1007/s10853-017-1103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1103-9

Keywords

Navigation