Skip to main content
Log in

Graphene oxides for removal of heavy and precious metals from wastewater

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Iron, chromium, lead, europium, silver, copper, strontium, cesium, zinc and nickel are some of the most frequently found heavy metal ions in wastewater and can cause serious health problems. Hence, their removal is essential from the environmental point of view. Recent studies show that graphene oxide (GO) can efficiently remove heavy metal ions from wastewater. A great deal of effort has been made to enhance the waste removal performance of GO using a variety of techniques. The performance of GO as an adsorbent agent to remove various organic pollutants, radioactive wastes and dyes has already been reviewed by various authors. However, the capability of GO and its derivatives to remove heavy metal ions has not been reviewed in detail. This paper reviews the wastewater removal efficiency and sorption mechanism of GO, functionalized GO and their composites for five of the most extensively studied heavy metal ions: Cr(III), Cr(VI), Cu(II), Pb(II) and Au(III). The waste removal kinetics of the adsorbents and the condition for the maximum adsorption are analysed for each of these heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yang Y, Wu WQ, Zhou HH et al (2014) Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu(II) removal. J Cent South Univ 21:2826–2831. doi:10.1007/s11771-014-2246-3

    Article  Google Scholar 

  2. Fan L, Luo C, Sun M, Qiu H (2012) Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J Mater Chem 22:24577–24583. doi:10.1039/c2jm35378d

    Article  Google Scholar 

  3. Li L, Luo C, Li X et al (2014) Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int J Biol Macromol 66:172–178. doi:10.1016/j.ijbiomac.2014.02.031

    Article  Google Scholar 

  4. Jiang T, Liu W, Mao Y et al (2015) Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. Chem Eng J 259:603–610. doi:10.1016/j.cej.2014.08.022

    Article  Google Scholar 

  5. Kołodyńska D, Kowalczyk M, Hubicki Z (2014) Evaluation of iron-based hybrid materials for heavy metal ions removal. J Mater Sci 49:2483–2495. doi:10.1007/s10853-013-7944-y

    Article  Google Scholar 

  6. Liu L, Li C, Bao C et al (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357. doi:10.1016/j.talanta.2012.02.051

    Article  Google Scholar 

  7. Liu L, Liu S, Zhang Q et al (2013) Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J Chem Eng Data 58:209–216. doi:10.1021/je300551c

    Article  Google Scholar 

  8. Dąbrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. doi:10.1016/j.chemosphere.2004.03.006

    Article  Google Scholar 

  9. Soylak M, Unsal YE, Kizil N, Aydin A (2010) Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem Toxicol 48:517–521. doi:10.1016/j.fct.2009.11.005

    Article  Google Scholar 

  10. Agboola O, Mokrani T, Sadiku R (2016) Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions. J Mater Sci 51:2499–2511. doi:10.1007/s10853-015-9562-3

    Article  Google Scholar 

  11. Noel Jacob K, Senthil Kumar S, Thanigaivelan A et al (2014) Sulfonated polyethersulfone-based membranes for metal ion removal via a hybrid process. J Mater Sci 49:114–122. doi:10.1007/s10853-013-7682-1

    Article  Google Scholar 

  12. Erturk Ü, Yerlikaya C, Sivritepe N (2007) In vitro phytoextraction capacity of blackberry for copper and zinc. Asian J Chem 19:2161–2168

    Google Scholar 

  13. Wang X, Pei Y, Lu M et al (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. doi:10.1007/s10853-014-8773-3

    Article  Google Scholar 

  14. Krishnan KA, Anirudhan TS (2002) Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse Pith. Ind Eng Chem Res 41:5085–5093. doi:10.1021/ie0110181

    Article  Google Scholar 

  15. Onganer Y, Temur (Işik) Ç, (1998) Adsorption dynamics of Fe(III) from aqueous solutions onto activated carbon. J Colloid Interface Sci 205:241–244. doi:10.1006/jcis.1998.5616

    Article  Google Scholar 

  16. Qiu B, Wang Y, Sun D et al (2015) Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. J Mater Chem A 3:9817–9825. doi:10.1039/C5TA01227A

    Article  Google Scholar 

  17. Zhu J, Gu H, Guo J et al (2014) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J Mater Chem A 2:2256–2265. doi:10.1039/C3TA13957C

    Article  Google Scholar 

  18. Qiu B, Gu H, Yan X et al (2014) Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. J Mater Chem A 2:17454–17462. doi:10.1039/C4TA04040F

    Article  Google Scholar 

  19. Zhang D, Wei S, Kaila C et al (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919. doi:10.1039/c0nr00065e

    Article  Google Scholar 

  20. Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773. doi:10.1016/j.procbio.2003.08.002

    Article  Google Scholar 

  21. Thirunavukkarasu OS, Viraraghavan T, Subramanian KS (2003) Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut 142:95–111

    Article  Google Scholar 

  22. El Mouzdahir Y, Elmchaouri A, Mahboub R et al (2007) Interaction of stevensite with Cd2+ and Pb2+ in aqueous dispersions. Appl Clay Sci 35:47–58. doi:10.1016/j.clay.2006.08.002

    Article  Google Scholar 

  23. Wan Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161. doi:10.1016/j.ijbiomac.2004.03.001

    Article  Google Scholar 

  24. Galhoum AA, Atia AA, Mahfouz MG et al (2015) Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. J Mater Sci 50:2832–2848. doi:10.1007/s10853-015-8845-z

    Google Scholar 

  25. Liu B, Wang D, Xu Y, Huang G (2011) Adsorption properties of Cd(II)-imprinted chitosan resin. J Mater Sci 46:1535–1541. doi:10.1007/s10853-010-4958-6

    Article  Google Scholar 

  26. Qiu B, Xu C, Sun D et al (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14. doi:10.1016/j.apsusc.2014.07.039

    Article  Google Scholar 

  27. Qiu B, Xu C, Sun D et al (2014) Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Adv 4:29855–29865. doi:10.1039/c4ra01700e

    Article  Google Scholar 

  28. Gu H, Rapole SB, Sharma J et al (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2:11007–11018. doi:10.1039/c2ra21991c

    Article  Google Scholar 

  29. Qiu B, Guo J, Zhang X et al (2014) Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. ACS Appl Mater Interfaces 6:19816–19824. doi:10.1021/am505170j

    Article  Google Scholar 

  30. Qiu B, Xu C, Sun D et al (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2:2070–2080. doi:10.1021/sc5003209

    Article  Google Scholar 

  31. Kakavandi B, Kalantary RR, Jafari AJ et al (2015) Pb(II) adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: experimental and modeling study. Clean Soil Air Water 43:1157–1166. doi:10.1002/clen.201400568

    Article  Google Scholar 

  32. Abas SNA, Ismail MHS, Siajam SI, Kamal ML (2015) Development of novel adsorbent-mangrove-alginate composite bead (MACB) for removal of Pb(II) from aqueous solution. J Taiwan Inst Chem Eng 50:182–189. doi:10.1016/j.jtice.2014.11.013

    Article  Google Scholar 

  33. Wang X, Shao D, Hou G et al (2015) Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite. J Mol Liq 207:338–342. doi:10.1016/j.molliq.2015.04.029

    Article  Google Scholar 

  34. Yu Y, Shapter JG, Popelka-Filcoff R et al (2014) Copper removal using bio-inspired polydopamine coated natural zeolites. J Hazard Mater 273:174–182. doi:10.1016/j.jhazmat.2014.03.048

    Article  Google Scholar 

  35. Sharaf El-Deen SE, Sharaf El-Deen GE (2015) Adsorption of Cr(VI) from aqueous solution by activated carbon prepared from agricultural solid waste. Sep Sci Technol 50:1469–1479. doi:10.1080/01496395.2015.1004348

    Article  Google Scholar 

  36. Liu Q, Yang B, Zhang L, Huang R (2015) Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Korean J Chem Eng 32:1314–1322. doi:10.1007/s11814-014-0339-1

    Article  Google Scholar 

  37. Fujiwara K, Ramesh A, Maki T et al (2007) Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50. doi:10.1016/j.jhazmat.2006.11.049

    Article  Google Scholar 

  38. Sitko R, Turek E, Zawisza B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689. doi:10.1039/c3dt33097d

    Article  Google Scholar 

  39. Zhou NL, Gu H, Tang FF et al (2013) Biocompatibility of novel carboxylated graphene oxide-glutamic acid complexes. J Mater Sci 48:7097–7103. doi:10.1007/s10853-013-7523-2

    Article  Google Scholar 

  40. Zhou Q, Zhong YH, Chen X et al (2014) Adsorption and photocatalysis removal of fulvic acid by TiO2-graphene composites. J Mater Sci 49:1066–1075. doi:10.1007/s10853-013-7784-9

    Article  Google Scholar 

  41. Zhu J, Chen M, Qu H et al (2013) Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ Sci 6:194. doi:10.1039/c2ee23422j

    Article  Google Scholar 

  42. Zhu J, Sadu R, Wei S et al (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State Sci Technol 1:M1–M5. doi:10.1149/2.010201jss

    Article  Google Scholar 

  43. Chen R, Zhao T, Tian T et al (2014) Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Mater 2:124109. doi:10.1063/1.4901751

    Article  Google Scholar 

  44. Porwal H, Tatarko P, Grasso S et al (2013) Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mater 14:055007. doi:10.1088/1468-6996/14/5/055007

    Article  Google Scholar 

  45. Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50:5348–5361. doi:10.1007/s10853-015-9082-1

    Article  Google Scholar 

  46. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. doi:10.1021/nl801827v

    Article  Google Scholar 

  47. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson MEZC (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  Google Scholar 

  48. Hsu F-H, Huang J-W, Wu T-M (2015) Electrochemical characteristics of graphene nanoribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate). Mater Chem Phys 161:265–270. doi:10.1016/j.matchemphys.2015.05.051

    Article  Google Scholar 

  49. Mendoza-Sánchez B, Coelho J, Pokle A, Nicolosi V (2015) A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochim Acta 174:696–705. doi:10.1016/j.electacta.2015.06.030

    Article  Google Scholar 

  50. Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon N Y 56:121–131. doi:10.1016/j.carbon.2012.12.076

    Article  Google Scholar 

  51. Kamali AR, Fray D (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in graphite. Nanoscale 7:11310–11320. doi:10.1039/C5NR01132A

    Article  Google Scholar 

  52. Zhu J, Wei S, Gu H et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985. doi:10.1021/es2014133

    Article  Google Scholar 

  53. Zhu J, Chen M, He Q et al (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824. doi:10.1039/c3ra44621b

    Article  Google Scholar 

  54. Kamali AR (2016) Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. doi:10.1039/C5GC02455B

    Google Scholar 

  55. Kamali AR, Fray D (2016) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J Mater Sci 51:569–576. doi:10.1007/s10853-015-9340-2

    Article  Google Scholar 

  56. Chen JH, Xing HT, Guo HX et al (2014) Investigation on the adsorption properties of Cr(VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2:12561–12570. doi:10.1039/C4TA02004A

    Article  Google Scholar 

  57. Hadi Najafabadi H, Irani M, Roshanfekr Rad L et al (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5:16532–16539. doi:10.1039/C5RA01500F

    Article  Google Scholar 

  58. Wei H, Zhu J, Wu S et al (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer (Guildf) 54:1820–1831. doi:10.1016/j.polymer.2013.01.051

    Article  Google Scholar 

  59. Guo F, Liu Y, Wang H et al (2015) Adsorption behavior of Cr(VI) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv 5:45384–45392. doi:10.1039/C5RA02015H

    Article  Google Scholar 

  60. Liu X, Zhou Y, Nie W, Song L (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50:6113–6123. doi:10.1007/s10853-015-9166-y

    Article  Google Scholar 

  61. Parmar KR, Patel I, Basha S, Murthy ZVP (2014) Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49:6772–6783. doi:10.1007/s10853-014-8378-x

    Article  Google Scholar 

  62. Huang LJ, Wang YX, Tang JG et al (2015) A new graphene nanocomposite to improve the electrochemical properties of magnesium-based amorphous alloy. Mater Lett 160:104–108. doi:10.1016/j.matlet.2015.07.080

    Article  Google Scholar 

  63. Yang J, Wu J, Lu Q, Lin T (2014) Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain Chem Eng 2:1203–1211. doi:10.1021/sc500030v

    Article  Google Scholar 

  64. Wang Y, He Q, Qu H et al (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478–9488. doi:10.1039/C4TC01351D

    Article  Google Scholar 

  65. Chung C, Kim YK, Shin D et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224. doi:10.1021/ar300159f

    Article  Google Scholar 

  66. Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955. doi:10.1002/adma.201202321

    Article  Google Scholar 

  67. Kyzas GZ, Deliyanni EA, Matis KA (2014) Graphene oxide and its application as an adsorbent for wastewater treatment. J Chem Technol Biotechnol 89:196–205. doi:10.1002/jctb.4220

    Article  Google Scholar 

  68. William S, Hummers J, Offeman RE (1958) Preparation of graphitic Oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  Google Scholar 

  69. Cui L, Wang Y, Gao L et al (2015) Removal of Hg(II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: synthesis, adsorption mechanism and separation properties. J Colloid Interface Sci 456:42–49. doi:10.1016/j.jcis.2015.06.007

    Article  Google Scholar 

  70. Zhu J, Wei S, Chen M et al (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467. doi:10.1016/j.apt.2012.10.012

    Article  Google Scholar 

  71. Hu XJ, Liu YG, Wang H et al (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep Purif Technol 108:189–195. doi:10.1016/j.seppur.2013.02.011

    Article  Google Scholar 

  72. Kyzas GZ, Travlou NA, Kalogirou O, Deliyanni EA (2013) Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Materials (Basel) 6:1360–1376. doi:10.3390/ma6041360

    Article  Google Scholar 

  73. He YQ, Zhang NN, Wang XD (2011) Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chem Lett 22:859–862. doi:10.1016/j.cclet.2010.12.049

    Article  Google Scholar 

  74. Zhang N, Qiu H, Si Y et al (2011) Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon N Y 49:827–837. doi:10.1016/j.carbon.2010.10.024

    Article  Google Scholar 

  75. Wang Y, Liu X, Wang H et al (2014) Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions. J Colloid Interface Sci 416:243–251. doi:10.1016/j.jcis.2013.11.012

    Article  Google Scholar 

  76. Fan L, Luo C, Sun M et al (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surfaces B Biointerfaces 103:523–529. doi:10.1016/j.colsurfb.2012.11.006

    Article  Google Scholar 

  77. Li L, Fan L, Sun M et al (2013) Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Int J Biol Macromol 58:169–175. doi:10.1016/j.ijbiomac.2013.03.058

    Article  Google Scholar 

  78. Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287. doi:10.1016/j.carbpol.2015.06.025

    Article  Google Scholar 

  79. Li L, Wang Z, Ma P et al (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22:150. doi:10.1007/s10965-015-0794-3

    Article  Google Scholar 

  80. Sheshmani Shabnam, Mehrnaz Akhundi Nematzadeh SS, Ashori A (2015) Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. Int J Biol Macromol 80:475–480. doi:10.1007/s11814-015-0156-1

    Article  Google Scholar 

  81. Wang Y, Yan T, Gao L et al (2016) Magnetic hydroxypropyl chitosan functionalized graphene oxide as adsorbent for the removal of lead ions from aqueous solution. Desalin Water Treat 57:3975–3984. doi:10.1080/19443994.2014.989273

    Article  Google Scholar 

  82. Jiang T, Yan L, Zhang L et al (2015) Fabrication of a novel graphene oxide/β-FeOOH composite and its adsorption behavior for copper ions from aqueous solution. Dalt Trans 44:10448–10456. doi:10.1039/C5DT01030F

    Article  Google Scholar 

  83. Li S, Lu X, Xue Y et al (2012) Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS ONE 7:e43328. doi:10.1371/journal.pone.0043328

    Article  Google Scholar 

  84. Chauke VP, Maity A, Chetty A (2015) High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J Mol Liq 211:71–77. doi:10.1016/j.molliq.2015.06.044

    Article  Google Scholar 

  85. Hu XJ, Liu YG, Wang H et al (2014) Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: effects of pH, ionic strength, background electrolytes, and citric acid. Chem Eng Res Des 3:675–683. doi:10.1016/j.cherd.2014.06.002

    Google Scholar 

  86. Sui N, Wang L, Wu X et al (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv 5:746–752. doi:10.1039/C4RA11669K

    Article  Google Scholar 

  87. Liu Y, Xu L, Liu J et al (2016) Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chem Eng J 285:698–708. doi:10.1016/j.cej.2015.10.047

    Article  Google Scholar 

  88. Zhou G, Liu C, Tang Y et al (2015) Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chem Eng J 280:275–282. doi:10.1016/j.cej.2015.06.041

    Article  Google Scholar 

  89. Sitko R, Zawisza B, Talik E et al (2014) Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis. Anal Chim Acta 834:22–29. doi:10.1016/j.aca.2014.05.014

    Article  Google Scholar 

  90. Li H, Chi Z, Li J (2014) Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(III) removal. Desalin Water Treat 52:1937–1946. doi:10.1080/19443994.2013.806224

    Article  Google Scholar 

  91. Wang Y, Liang S, Chen B et al (2013) Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@Mesoporous silica–graphene oxide composites. PLoS ONE 8:2–9. doi:10.1371/journal.pone.0065634

    Google Scholar 

  92. Madadrang CJ, Kim HY, Gao G et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl Mater Interfaces 4:1186–1193. doi:10.1021/am201645g

    Article  Google Scholar 

  93. Cui L, Wang Y, Gao L et al (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10. doi:10.1016/j.cej.2015.06.043

    Article  Google Scholar 

  94. Zhu X, Cui Y, Chang X, Wang H (2016) Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids. Talanta 146:358–363. doi:10.1016/j.talanta.2015.08.073

    Article  Google Scholar 

  95. Kumar ASK, Kakan SS, Rajesh N (2013) A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem Eng J 230:328–337. doi:10.1016/j.cej.2013.06.089

    Article  Google Scholar 

  96. Xing HT, Chen JH, Sun X et al (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem Eng J 263:280–289. doi:10.1016/j.cej.2014.10.111

    Article  Google Scholar 

  97. Yari M, Rajabi M, Moradi O et al (2015) Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J Mol Liq 209:50–57. doi:10.1016/j.molliq.2015.05.022

    Article  Google Scholar 

  98. Yu Y, De Andrade LCX, Fang L et al (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50:3457–3466. doi:10.1007/s10853-015-8905-4

    Google Scholar 

  99. Sitko R, Janik P, Feist B et al (2014) Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. ACS Appl Mater Interfaces 6:20144–20153. doi:10.1021/am505740d

    Article  Google Scholar 

  100. Luo S, Xu X, Zhou G et al (2014) Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J Hazard Mater 274:145–155. doi:10.1016/j.jhazmat.2014.03.062

    Article  Google Scholar 

  101. Zhang F, Wang B, He S, Man R (2014) Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data 59:1719–1726. doi:10.1021/je500219e

    Article  Google Scholar 

  102. Sitko R, Janik P, Zawisza B et al (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87:3535–3542. doi:10.1021/acs.analchem.5b00283

    Article  Google Scholar 

  103. Algothmi WM, Bandaru NM, Yu Y et al (2013) Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38. doi:10.1016/j.jcis.2013.01.051

    Article  Google Scholar 

  104. Tan M, Liu X, Li W, Li H (2015) Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by l-tryptophan-functionalized graphene oxide. J Chem Eng Data 60:1469–1475. doi:10.1021/acs.jced.5b00015

    Article  Google Scholar 

  105. Li L, Duan H, Wang X, Luo C (2014) Adsorption property of Cr(VI) on magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres. New J Chem 38:6008–6016. doi:10.1039/C4NJ00782D

    Article  Google Scholar 

  106. Zhang F, Song Y, Song S et al (2015) Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces 7:7251–7263. doi:10.1021/acsami.5b00433

    Article  Google Scholar 

  107. Dandu Kamakshi Gari VR, Kim M (2015) Removal of Pb(II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies. Monatshefte fur Chemie 146:1445–1453. doi:10.1007/s00706-015-1429-4

    Article  Google Scholar 

  108. Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436. doi:10.1021/am504826q

    Article  Google Scholar 

  109. Cui L, Wang Y, Hu L et al (2015) Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv 5:9759–9770. doi:10.1039/C4RA13009J

    Article  Google Scholar 

  110. Ding Z, Hu X, Morales VL, Gao B (2014) Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chem Eng J 257:248–252. doi:10.1016/j.cej.2014.07.034

    Article  Google Scholar 

  111. Hou W, Zhang Y, Liu T et al (2015) Graphene oxide coated quartz sand as a high performance adsorption material in the application of water treatment. RSC Adv 5:8037–8043. doi:10.1039/C4RA11430B

    Article  Google Scholar 

  112. Liu M, Wen T, Wu X et al (2013) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans 42:14710–14717. doi:10.1039/c3dt50955a

    Article  Google Scholar 

  113. Fan L, Li M, Lv Z et al (2012) Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surfaces B Biointerfaces 95:42–49. doi:10.1016/j.colsurfb.2012.02.007

    Article  Google Scholar 

  114. Rogers RD (2007) Materials science: reflections on ionic liquids. Nature 447:917–918. doi:10.1038/447917a

    Article  Google Scholar 

  115. Ferreira LS, Trierweiler JO (2009) Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc 7:405–410. doi:10.1002/aic

    Google Scholar 

  116. Endres F (2010) Physical chemistry of ionic liquids. Phys Chem Chem Phys 12:1648. doi:10.1039/c001176m

    Article  Google Scholar 

  117. Kumar SKA, Gupta T, Kakan SS et al (2012) Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. J Hazard Mater 239–240:213–224. doi:10.1016/j.jhazmat.2012.08.065

    Article  Google Scholar 

  118. Rekharsky MV, Inoue Y (2002) Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-beta-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and Coulombic interactions. J Am Chem Soc 124:813–826. doi:10.1021/ja010889z

    Article  Google Scholar 

  119. Guo Y, Guo S, Ren J et al (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host–guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010. doi:10.1021/nn100939n

    Article  Google Scholar 

  120. Ezzeddine Z, Batonneau-Gener I, Pouilloux Y et al (2015) Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous Mesoporous Mater 212:125–136. doi:10.1016/j.micromeso.2015.03.013

    Article  Google Scholar 

  121. Awual MR, Jyo A (2009) Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin. Water Res 43:1229–1236. doi:10.1016/j.watres.2008.12.018

    Article  Google Scholar 

  122. Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132. doi:10.1295/polymj.17.117

    Article  Google Scholar 

  123. Tomalia D, Baker JR, Dewald J et al (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466–2468. doi:10.1021/ma00163a029

    Article  Google Scholar 

  124. Compton OC, Dikin DA, Putz KW et al (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22:892–896. doi:10.1002/adma.200902069

    Article  Google Scholar 

  125. Che J, Shen L, Xiao Y (2010) A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J Mater Chem 20:1722–1727. doi:10.1039/b922667b

    Article  Google Scholar 

  126. Tzu T, Tsuritani T, Sato K (2013) Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite. J Environ Prot (Irvine, Calif) 04:51–55. doi:10.4236/jep.2013.41B010

  127. Yang X, Chen C, Li J et al (2012) Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv 2:8821. doi:10.1039/c2ra20885g

    Article  Google Scholar 

  128. De Cuyper M, Muller PLH (2003) Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipid coat. J Phys: Condens Matter 1425:3179–3188

    Google Scholar 

  129. Qian G, Li M, Wang F, Liu X (2014) Removal of Fe3+ from aqueous solution by natural apatite. J Surf Eng Mater Adv Technol 2014:14–20

    Google Scholar 

  130. Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526. doi:10.1016/j.jtice.2013.04.016

    Article  Google Scholar 

  131. Li X, Xia T, Xu C et al (2014) Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal Today 225:64–73. doi:10.1016/j.cattod.2013.10.086

    Article  Google Scholar 

  132. Tian Y, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanoparticle Res 12:2371–2380. doi:10.1007/s11051-010-9912-7

    Article  Google Scholar 

  133. Ebadi M, Saadat M, Shagholani H (2015) A new one-pot reverse microemulsion synthesis of ZnS nanoparticle using olive oil as organic solvent and surfactant and their application in remove heavy metal ions. J Mater Sci: Mater Electron 26:9087–9091. doi:10.1007/s10854-015-3595-x

    Google Scholar 

  134. Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245. doi:10.1007/s10853-014-8118-2

    Article  Google Scholar 

  135. Gu H, Rapole SB, Huang Y, Cao D, Luo Z, Wei SGZ (2013) Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium. J Mater Chem A 1:2011–2021. doi:10.1039/c2ta00550f

    Article  Google Scholar 

  136. Zhang K, Kemp KC, Chandra V (2012) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130. doi:10.1016/j.matlet.2012.05.002

    Article  Google Scholar 

  137. Uysal M, Ar I (2007) Removal of Cr(VI) from industrial wastewaters by adsorption. Part I: determination of optimum conditions. J Hazard Mater 149:482–491. doi:10.1016/j.jhazmat.2007.04.019

    Article  Google Scholar 

  138. Yang S, Li L, Pei Z et al (2014) Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surfaces A Physicochem Eng Asp 457:100–106. doi:10.1016/j.colsurfa.2014.05.062

    Article  Google Scholar 

  139. Wu W, Yang Y, Zhou H et al (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372. doi:10.1007/s11270-012-1372-5

    Article  Google Scholar 

  140. Papageorgiou SK, Katsaros FK, Kouvelos EP et al (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater 137:1765–1772. doi:10.1016/j.jhazmat.2006.05.017

    Article  Google Scholar 

  141. Li X, Zhou H, Wu W et al (2015) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397. doi:10.1016/j.jcis.2015.02.039

    Article  Google Scholar 

  142. Zhao G, Ren X, Gao X et al (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalt Trans 40:10945–10952. doi:10.1039/c1dt11005e

    Article  Google Scholar 

  143. Jia W, Lu S (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean J Chem Eng 31:1265–1270. doi:10.1007/s11814-014-0045-z

    Article  Google Scholar 

  144. Huiping S, Xingang L, Huaigang C, Fangqin C (2013) Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalin Water Treat 51:3864–3870. doi:10.1080/19443994.2013.781737

    Article  Google Scholar 

  145. Deng K, Yin P, Liu X et al (2014) Modeling, analysis and optimization of adsorption parameters of Au(III) using low-cost agricultural residuals buckwheat hulls. J Ind Eng Chem 20:2428–2438. doi:10.1016/j.jiec.2013.10.023

    Article  Google Scholar 

  146. Gardea-Torresdey JL, Tiemann KJ, Gamez G et al (2000) Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396. doi:10.1021/es991325m

    Article  Google Scholar 

Download references

Acknowledgements

The support of Boğaziçi University Research Fund (ref: research grant 9940) for this project is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Ege.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duru, İ., Ege, D. & Kamali, A.R. Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51, 6097–6116 (2016). https://doi.org/10.1007/s10853-016-9913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9913-8

Keywords

Navigation