Skip to main content

Advertisement

Log in

Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-supported two-dimensional metal oxide nanosheet arrays have attracted great attention in lithium-ion batteries (LIBs) due to their superior structure advantages such as large surface area, good structure stability, and high electronic conductivity compared to one dimensional (1D) nanowires. Herein, we design the self-supported mesoporous CoFe2O4/CoO nanosheet arrays assembled from the nanowires precursor based on the combination of hydrothermal and atomic layer deposition techniques. The assembled CoFe2O4/CoO nanosheets exhibit an ultra-high initial charge capacity of 1705 mAhg−1 and good cycling stability (1043 mAhg−1 after 50 cycles) when directly used as a binder-free anode of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  4. Jiang J, Li YY, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 20:5166–5180

    Article  Google Scholar 

  5. Peng C, Chen B, Qin Y, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1091

    Article  Google Scholar 

  6. Yu L, Zhang L, Wu HB, Zhang G, Lou XWD (2013) Controlled synthesis of hierarchical CoxMn3−xO4 array micro-nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671

    Article  Google Scholar 

  7. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Article  Google Scholar 

  8. Lou XW, Deng D, Archer LA (2007) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258–262

    Article  Google Scholar 

  9. Du N, Zhang H, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material For Li-battery applications. Adv Mater 19(24):4505–4509

    Article  Google Scholar 

  10. Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21(18):6636

    Article  Google Scholar 

  11. Li D, Ding L-X, Wang S, Cai D, Wang H (2014) Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J Mater Chem A 2(16):5625

    Article  Google Scholar 

  12. Wu F, Ma X, Feng J, Qian Y, Xiong S (2014) 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J Mater Chem A 2(30):11597

    Article  Google Scholar 

  13. Liu Y, Jiao Y, Zhou H, Yu X, Qu F, Wu X (2014) Rational design of WO3 nanostructures as the anode materials for lithium-ion batteries with enhanced electrochemical performance. Nano-Micro Lett 7(1):12–16

    Article  Google Scholar 

  14. Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1(24):7159

    Article  Google Scholar 

  15. Sun J, Liu H, Chen X, Evans DG, Yang W (2013) An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries. Nanoscale 5(16):7564–7571

    Article  Google Scholar 

  16. Guan Q, Cheng J, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6(10):7626–7632

    Article  Google Scholar 

  17. Wang H, Mao N, Wang X (2015) Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7(4):2882–2890

    Article  Google Scholar 

  18. Huang G, Zhang F, Wang L (2015) MOF route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium ion batteries. ACS Nano 9(2):1592–1599

    Article  Google Scholar 

  19. Luo J, Liu J, Zeng Z et al (2013) Three-dimensional graphene foam supported Fe(3)O(4) lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143

    Article  Google Scholar 

  20. Wang J, Zhang Q, Li X et al (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26

    Article  Google Scholar 

  21. Wu H, Xu M, Wang Y, Zheng G (2013) Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res 6(3):167–173

    Article  Google Scholar 

  22. Wu JB, Guo RQ, Huang XH, Lin Y (2014) Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery. J Power Sources 248:115–121

    Article  Google Scholar 

  23. Cao KZ, Jiao LF, Yuan HT (2015) Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Funct Mater 25(7):1082–1089

    Article  Google Scholar 

  24. Hong YJ, Son MY, Kang YC (2013) One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater 25(16):2279–2283

    Article  Google Scholar 

  25. Cai Z, Xu L, Yan M et al (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15(1):738–744

    Article  Google Scholar 

  26. Zhang H, Zhou L, Yu C (2014) Tailoring the void size of iron oxide@carbon yolk shell structure for optimized lithium strorage. Adv Funct Mater 24:4377–4382

    Article  Google Scholar 

  27. Wu R, Qian X, Zhou K (2014) Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303

    Article  Google Scholar 

  28. Wang Z, Zhou L, Lou XWD (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911

    Article  Google Scholar 

  29. Wu R, Qian X, Rui X et al (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938

    Article  Google Scholar 

  30. Kim W-S, Hwa Y, Kim H-C, Choi J-H, Sohn H-J, Hong S-H (2014) SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res 7(8):1128–1136

    Article  Google Scholar 

  31. Cao FF, Deng JW, Xin S et al (2011) Cu–Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv Mater 23(38):4415–4420

    Article  Google Scholar 

  32. Jung YS, Cavanagh AS, Riley LA et al (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22(19):2172–2176

    Article  Google Scholar 

  33. Kang E, Jung YS, Cavanagh AS et al (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21(13):2430–2438

    Article  Google Scholar 

  34. Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850

    Article  Google Scholar 

  35. Lotfabad EM, Kalisvaart P, Kohandehghan A et al (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516

    Article  Google Scholar 

  36. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XWD (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Environ Eng Sci 5:7883–7887

    Google Scholar 

  37. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO and CoN for Li-Ion batteries. ACS Appl Mater Interfaces 6:680–690

    Article  Google Scholar 

  38. Jiang J, Liu JP, Ding RM et al (2010) Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J Phys Chem C 114:929–932

    Article  Google Scholar 

  39. Du D, Yue W, Ren Y, Yang X (2014) Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries. J Mater Sci 49:8031–8039. doi:10.1007/s10853-014-8510-y

    Article  Google Scholar 

  40. Zhang H, Liu J, Zhao G et al (2015) Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: a soft x-ray spectroscopic study. ACS Appl Mater Interfaces 7(15):7863–7868

    Article  Google Scholar 

  41. Zhou S, Potzger K, Xu Q et al (2009) Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic, and magnetotransport properties. Phys Rev B 80(9):094409

    Article  Google Scholar 

  42. Li M, Yin Y, Li C et al (2011) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem Commun 48:410–412

    Article  Google Scholar 

  43. Chen J, Xu L, Li W, Gao X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586

    Article  Google Scholar 

  44. Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  45. Zheng T, Gozdz AS, Amatucci GG (1999) Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J Electrochem Soc 146:4014–4018

    Article  Google Scholar 

  46. Hu YS, Demir-Cakan R, Titirici MM, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-Ion batteries. Angew Chem Int Ed 47:1645–1649

    Article  Google Scholar 

  47. Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637

    Article  Google Scholar 

  48. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Ionics 5:895–904

    Google Scholar 

  49. Laruelle S, Grugeon S, Poizot P, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:627–634

    Article  Google Scholar 

  50. Chen CH, Hwang BJ, Do JS et al (2010) An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem Commun 12:496–498

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of China (NSFC) (Grant No. 91333112 and U1432249), the Priority Academic Program Development of Jiangsu Higher Education Institutions. This is also a project supported by Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation Center of Suzhou Nano Science & Technology, and sponsored by Qing Lan Project. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, H., Lv, X. et al. Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. J Mater Sci 51, 6590–6599 (2016). https://doi.org/10.1007/s10853-016-9902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9902-y

Keywords

Navigation