Skip to main content
Log in

Energy transfer properties and temperature-dependent luminescence of Ca14Al10Zn6O35: Dy3+, Mn4+ phosphors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dy3+-doped or Dy3+/Mn4+ co-doped Ca14Al10Zn6O35 phosphors were prepared by the solid-state reaction method. The phosphors were characterized by means of XRD, SEM, luminescence analysis, and thermal stability analysis. The obtained phosphors can be excited efficiently by NUV light and exhibit blue/yellow emission and deep red emission, which result from 4F9/2 → 6H15/2/4F9/2 → 6H13/2 transitions of Dy3+ ions and 2E → 4A2 transition of Mn4+ ions, respectively. The efficient energy transfer from Dy3+ ions to Mn4+ ions was confirmed, which was realized via the electric dipole–dipole interaction. The thermal quenching temperature of the phosphors is higher than 463 K, indicating that the phosphors have an excellent thermal stability. The temperature-induced electron population variation in the vibrational states caused the different influence on the emission intensity of Stokes and anti-Stokes sidebands of Mn4+ ions. By adding Na+ ion as a charge compensator and changing its doping concentration, the emission intensity of Ca13.88Al9.99Zn6O35: 0.12Dy3+, 0.01Mn4+ sample can be enhanced and the color tunability can be achieved. Ca14Al10Zn6O35: Dy3+, Mn4+, Na+ phosphors have potential application in solid-state lighting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182

    Article  Google Scholar 

  2. Lin CC, Xiao ZR, Guo GY, Chan TS, Liu RS (2010) Versatile phosphate phosphors ABPO4 in white light emitting diodes collocated characteristic analysis and theoretical calculations. J Am Ceram Soc 132:3020–3028

    Google Scholar 

  3. Tanner PA (2013) Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev 42:5090–5101

    Article  Google Scholar 

  4. Shang MM, Li CX, Lin J (2014) How to produce white light in a single-phase host? Chem Soc Rev 43:1372–1386

    Article  Google Scholar 

  5. Xie RJ, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci Technol Adv Mat 8:588–600

    Article  Google Scholar 

  6. Lin CC, Liu RS (2011) Advances in phosphors for light-emitting diodes. J Phys Chem Lett 2:1268–1277

    Article  Google Scholar 

  7. Piao XQ, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N (2007) Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem Mater 19:4592–4599

    Article  Google Scholar 

  8. Watanabe H, Wada H, Seki K, Itou M, Kijima N (2008) Synthetic method and luminescence properties of SrxCa1-xAlSiN3: Eu2+ mixed nitride phosphors. J Electrochem Soc 155:F31–F36

    Article  Google Scholar 

  9. Brinkley SE, Pfaff N, Denault KA, Zhang Z, Hintzen HT, Seshadri R, Nakamura S, Denbaars SP (2011) Robust thermal performance of Sr2Si5N8: Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting. Appl Phys Lett 99:241106–241109

    Article  Google Scholar 

  10. Kim YS, Choi SW, Park JH, Bok E, Kim BK, Hong SH (2012) Red-emitting (Sr, Ca)AlSiN3: Eu2+ phosphors synthesized by spark plasma sintering. ECS J Solid State Sc 2:R3021–R3025

    Article  Google Scholar 

  11. Smet PF, Parmentier AB, Poelman D (2011) Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc 158:R37–R54

    Article  Google Scholar 

  12. Murata T, Tanoue T, Iwasaki M, Morinaga K, Hase T (2005) Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED. J Lumin 114:207–212

    Article  Google Scholar 

  13. Pan YX, Liu GK (2008) Enhancement of phosphor efficiency via composition modification. Opt Lett 33:1816–1818

    Article  Google Scholar 

  14. Okamoto S, Yamamoto H (2010) Luminescent-efficiency improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO·0.5MgF2·GeO2: Mn4+ deep-red phosphors for light emitting diodes. J Electrochem Soc 157:J59–J63

    Article  Google Scholar 

  15. Xu YD, Wang D, Wang L, Ding N, Shi M, Zhong JG, Qi S (2013) Preparation and luminescent properties of a new red phosphor (Sr4Al14O25: Mn4+) for white LEDs. J Alloy Compd 550:226–230

    Article  Google Scholar 

  16. Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu RS, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5:4312–4322

    Google Scholar 

  17. Uma S, Rodrigues S, Martyanov IN, Klabunde KJ (2004) Exploration of photocatalytic activities of titanosilicate ETS-10 and transition metal incorporated ETS-10. Micropor Mesopor Mat 67:181–187

    Article  Google Scholar 

  18. Das S, Reddy AA, Babu SS, Prakash GV (2011) Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor. J Mater Sci 46:7770–7775. doi:10.1007/s10853-011-5756-5

    Article  Google Scholar 

  19. Zhang X, Seo HJ (2011) Luminescence properties of novel Sm3+, Dy3+ doped LaMoBO6 phosphors. J Alloy Compd 509:2007–2010

    Article  Google Scholar 

  20. Sun XY, Gu M, Huang SM, Liu XL, Liu B, Ni C (2009) Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass. Phys B Condens Mat 404:111–114

    Article  Google Scholar 

  21. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  Google Scholar 

  22. Lu W, Lv WZ, Zhao Q, Jiao MM, Shao BQ, You HP (2014) A novel efficient Mn4+ activated Ca14Al10Zn6O35 phosphor: application in red-emitting and white LEDs. Inorg Chem 53:11985–11990

    Article  Google Scholar 

  23. Seki K, Uematsu K, Toda K, Sato M (2014) Novel deep red emitting phosphors Ca14Zn6M10O35: Mn4+ (M = Al3+ and Ga3+). Chem Lett 43:1213–1215

    Article  Google Scholar 

  24. Barbanyagre VD, Timoshenko TI (1997) Calcium aluminozincates of CaxAlyZnkOn composition. Powder Diffr 12:22–26

    Article  Google Scholar 

  25. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  26. Srivastava AM, Beers WW (1996) Luminescence of Mn4+ in the distorted perovskite Gd2MgTiO6. J Electrochem Soc 143:L203–L205

    Article  Google Scholar 

  27. Xu YK, Adachi S (2009) Properties of Na2SiF6: Mn4+ and Na2GeF6: Mn4+ red phosphors synthesized by wet chemical etching. J Appl Phys 105:013525–013530

    Article  Google Scholar 

  28. You P, Yin G, Chen X, Yue B, Huang Z, Liao X, Yao Y (2011) Luminescence properties of Dy3+-doped Li2SrSiO4 for NUV-excited white LEDs. Opt Mater 33:1808–1812

    Article  Google Scholar 

  29. Shi Y, Wang Y, Yang Z (2011) Synthesis and characterization of YNbTiO6: Dy3+ phosphor. J Alloy Compd 509:3128–3131

    Article  Google Scholar 

  30. Zhong H, Li X, Shen R, Zhang J, Sun J, Zhong H, Cheng L, Tian Y, Chen B (2012) Spectral and thermal properties of Dy3+-doped NaGdTiO4 phosphors. J Alloy Compd 517:170–175

    Article  Google Scholar 

  31. Du Q, Zhou G, Zhou J, Jia X, Zhou H (2013) Enhanced luminescence of novel Y2Zr2O7: Dy3+ phosphors by Li+ co-doping. J Alloy Compd 552:152–156

    Article  Google Scholar 

  32. Yang Z, Hou C, Duan G, Yang F, Liu P, Wang C, Liu L, Dong G (2014) The photoluminescent property and optical transition analysis of host sensitized Ca0.5Sr0.5MoO4: Dy3+ phosphor. J Alloy Compd 604:346–351

    Article  Google Scholar 

  33. Monika DL, Nagabhushana H, Krishna RH, Nagabhushana BM, Sharma SC, Thomas TJ (2014) Synthesis and photoluminescence properties of a novel Sr2CeO4: Dy3+ nanophosphor with enhanced brightness by Li+ co-doping. RSC Adv 4:38655–38662

    Article  Google Scholar 

  34. Liu X, Xiang W, Chen F, Hu Z, Zhang W (2013) Synthesis and photoluminescence characteristics of Dy3+ doped NaY(WO4)2 phosphors. Mater Res Bull 48:281–285

    Article  Google Scholar 

  35. Wang GQ, Gong XH, Chen YJ, Huang JH, Lin YF, Luo ZD, Huang YD (2014) Synthesis and photoluminescence properties of near-UV pumped yellow-emitting Li3Ba2La3(WO4)8: Dy3+ phosphors. Opt Mater 36:1255–1259

    Article  Google Scholar 

  36. Liu Q, Liu Y, Yang Z, Han Y, Li X, Fu G (2012) Multiwavelength excited white-emitting phosphor Dy3+-activated Ba3Bi(PO4)3. J Alloy Compd 515:16–19

    Article  Google Scholar 

  37. Blasse G (1968) Energy transfer in oxidic phosphors. Phys Lett 28A:444–445

    Article  Google Scholar 

  38. Ozawa L, Jaffe PM (1971) The mechanism of the emission color shift with activator concentration in Eu+3 activated phosphors. J Electrochem Soc 118:1678–1679

    Article  Google Scholar 

  39. Xia ZG, Liu RS (2012) Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+, Tb3+ phosphors for near-UV white LEDs. J Phys Chem C 116:15604–15609

    Article  Google Scholar 

  40. Paulose PI, Jose G, Thomas V, Unnikrishnan NV, Warrier MKR (2003) Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J Phys Chem Solids 64:841–846

    Article  Google Scholar 

  41. Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070

    Article  Google Scholar 

  42. Reisfeld R, Soffer NL (1979) Energy transfer from UO2 2+ to Sm3+ in phosphate glass. J Solid State Chem 28:391–395

    Article  Google Scholar 

  43. Raju GSR, Park JY, Jung HC, Pavitra E, Moon BK, Jeong JH, Kim JH (2011) Excitation induced efficient luminescent properties of nanocrystalline Tb3+/Sm3+: Ca2Gd8Si6O26 phosphors. J Mater Chem 21:6136–6139

    Article  Google Scholar 

  44. Xia Z, Zhang Y, Molokeev MS, Atuchin VV (2013) Structural and luminescence properties of yellow-emitting NaScSi2O6: Eu2+ phosphors: Eu2+ site preference analysis and generation of red emission by codoping Mn2+ for white-light-emitting diode applications. J Phys Chem C 117:20847–20854

    Article  Google Scholar 

  45. Tang YS, Hu SF, Ke WC, Lin CC, Bagkar NC, Liu RS (2008) Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2: Eu2+ phosphor for potential application in light-emitting diodes. Appl Phys Lett 93:131114–131117

    Article  Google Scholar 

  46. Mikhailik VB, Kraus H, Wahl D (2004) One- and two-photon excited luminescence and band-gap assignment in CaWO4. Phys Rev B 69:205110–205119

    Article  Google Scholar 

  47. Kolk E, Dorenbos P, Haas JTM, Eijk CWE (2005) Thermally stimulated electron delocalization and luminescence quenching of Ce impurities in GdAlO3. Phys Rev B 71:045121–045126

    Article  Google Scholar 

  48. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  49. Blasse G (1992) Vibronic transitions in rare earth spectroscopy. Int Rev Phys Chem 11:71–100

    Article  Google Scholar 

  50. Zare RN (1964) Calculation of intensity distribution in the vibrational structure of electronic transitions: The B 30+ u—X 10+ g resonance series of molecular iodine. J Chem Phys 40:1934–1944

    Article  Google Scholar 

  51. Chen Y, Wang W, Wang J, Wu MM, Wang CX (2014) A high color purity red emitting phosphor CaYAlO4: Mn4+ for LEDs. J Solid State Light 1:1–8

    Article  Google Scholar 

  52. Zhang SA, Hu YH, Duan H, Chen L, Fu YR, Ju GF, Wang T, He M (2015) Novel La3GaGe5O16: Mn4+ based deep red phosphor: a potential color converter for warm white light. RSC Adv 5:90499–90507

    Article  Google Scholar 

  53. Peng MY, Yin XW, Tanner PA, Brik MG, Li PF (2015) Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25: Mn4+ for warm wLEDs. Chem Mater 27:2938–2945

    Article  Google Scholar 

  54. Fonger WH (1970) Eu+3 5D Resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl. J Chem Phys 52:6364–6372

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Key Laboratory of Innovation Method and Decision Management System of Guangdong Province (No. 501120040), the Science and Technology Plan Projects of Guangdong Province (No. 2013B061000008), and the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China (No. 2010B090400021) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiren Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, W., Wang, N. et al. Energy transfer properties and temperature-dependent luminescence of Ca14Al10Zn6O35: Dy3+, Mn4+ phosphors. J Mater Sci 51, 4201–4212 (2016). https://doi.org/10.1007/s10853-016-9791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9791-0

Keywords

Navigation