Skip to main content
Log in

Novel optical properties of MoS2 on monolayer zinc tellurium substrate

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of the MoS2/ZnTe monolayer have been investigated through first-principles calculations. According to the different atoms’ parallelism, we have discussed five interface growth configurations: Te–Mo, Te–S, Hollow, Zn–Mo, and Zn–S systems. It has been shown that the monolayer MoS2/ZnTe exhibits semiconducting behavior and the band gap of MoS2 can be effectively tuned to 1.60 or 1.28 eV in MoS2 and ZnTe heterobilayer. An unexpected direct–indirect band gap transition is also observed, which is dependent on the stacking pattern and interlayer spacing on MoS2. The optical properties of MoS2/ZnTe heterobilayer reflect the phenomenon of red shift. The absorption edge of pure monolayer molybdenum disulfide is 0.8 eV, while the absorption edges of Te–Mo, Te–S, Hollow, Zn–Mo, and Zn–S systems become 0 eV. As a potential material, these provide a possible way to design effective FETs out of MoS2 on a ZnTe monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han SW, Kwon H, Kim SK (2011) Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys Rev B 84:045409

    Article  Google Scholar 

  2. Lebegue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79(11):115409

    Article  Google Scholar 

  3. Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111(44):16195–16196

    Google Scholar 

  4. Ataca C, Sahin H, Akturk E (2011) Mechanical and electronic properties of MoS2 nanoribbons and their defects. J Phys Chem C 115(10):3934–3941

    Article  Google Scholar 

  5. Mak KF, Lee C, Shan J, Heinx TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  6. Splendiani A, Sun L, Zhang Y (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275

    Article  Google Scholar 

  7. Newaz AKM, Prasai D, Ziegler JI (2013) Electrical control of optical properties of monolayer MoS2. Solid State Commun 155:49–52

    Article  Google Scholar 

  8. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830

    Article  Google Scholar 

  9. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2012) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  Google Scholar 

  10. Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9709

    Article  Google Scholar 

  11. Friend H, Yoffe A (1973) Layer compounds. Annu Rev Mater Sci 3:147–170

    Article  Google Scholar 

  12. Levy F (1979) Intercalated layered materials. Phys Chem Mater A 6:99–100

    Google Scholar 

  13. Fan XB, Liu F, Yao SY (2012) Preparation of MoS2 nanocatalyst and its application in hydrodesulfurization. J Catal 33:1027–1031

    Google Scholar 

  14. Pollack SS, Makovsky LE, Brown FR (1979) Identification by X-ray diffraction of MoS2 in used CoMoAl2O3 desulfurization catalysts. J Catal 59(3):452–459

    Article  Google Scholar 

  15. Kam KK, Parkinson B (1982) Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Chem Phys 86(4):463–467

    Article  Google Scholar 

  16. Young PA (1968) Lattice parameter measurements on molybdenum disulphide. J Phys D Appl Phys 1(7):936

    Article  Google Scholar 

  17. Böker T, Severin R, Müller A (2001) Band Structures of MoS2, MoSe2 and a-MoTe2: angular-resolved photoelectron spectroscopy in the constant-final-state mode and ab initio calculations. Phys Rev B 64:235–305

    Article  Google Scholar 

  18. Kim C, Kelty S (2005) Near edge electronic structure in NbS2. J Chem Phys 123:244705

    Article  Google Scholar 

  19. Fang CM, Ettema ARHF, Haas C (1995) Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra. Phys Rev B 52:2336

    Article  Google Scholar 

  20. Novoselov KS, Jiang D, Schedin F, Booth TJ (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  Google Scholar 

  21. Ayari A, Cobas E, Ogundadegbe O (2007) Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J Appl Phys 101:014507

    Article  Google Scholar 

  22. Yue Q, Chang S, Qin S (2013) Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys Lett A 377(19):1362–1367

    Article  Google Scholar 

  23. Ramasubramaniam A, Naveh D (2013) Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B 87(19):195201

    Article  Google Scholar 

  24. Sun QC, Mazumdar D, Yadgarov L (2013) Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles. Nano Lett 13(6):2803–2808

    Article  Google Scholar 

  25. Li SS, Zhang CW, Yan SS, Hu SJ, Ji WX, Wang PJ, Li P (2014) Novel band structures in silicene on monolayer zinc sulfide substrate. J Phys 26:395003

    Google Scholar 

  26. Tsirlina T, Cohen S (1996) Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy. Sol Energy Mater Sol Cells 44(4):457–470

    Article  Google Scholar 

  27. Jager-Waldau A, Lux-Steiner MC, Bucher E, Jager-Waldau G (1993) WS2 thin films a new candidate for solar cells. In: IEEE conference 1993, p 347026

  28. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. 2001, Karlheinz Schwarz, Techn. Universitat Wien, Austria. ISBN 3-9501031-1-2

    Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  30. Ye LH, Freeman AJ, Delley B (2006) Half-metallic ferromagnetism in Cu-doped ZnO: density functional calculations. Phys Rev B 73:033203

    Article  Google Scholar 

  31. Xu WB, Huang BJ, Li P, Li F, Zhang CW, Wang PJ (2014) The electronic structure and optical properties of Mn and B, C, N co-doped MoS2 monolayers. Nanoscale Res Lett 9:554

    Article  Google Scholar 

  32. Naeem M, Hasanain SK, Mumtaz A (2008) Electrical transport and optical studies of ferromagnetic Cobalt doped ZnO nanoparticles exhibiting a metal–insulator transition. J Phys 20:025210

    Google Scholar 

  33. Singh N, Jabbour G (2012) Optical and photocatalytic properties of two-dimensional MoS2. J Eur Phys B 85(11):1–4

    Article  Google Scholar 

  34. Shi HL, Pan H (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87(15):155304

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61172028 61571210, 11274143, and 11304121) and the Natural Science Foundation of Shandong Province (Grant No. ZR2010EL017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-ji Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xl., Ji, Wx., Zhang, Cw. et al. Novel optical properties of MoS2 on monolayer zinc tellurium substrate. J Mater Sci 51, 4580–4587 (2016). https://doi.org/10.1007/s10853-016-9771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9771-4

Keywords

Navigation