Skip to main content
Log in

Electrowetting on a multi-walled carbon nanotube membrane with different droplet sizes in an electric field

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An electric field was applied across a deionized water droplet placed on a multi-walled carbon nanotube (MWCNT) membrane. Droplets of different size were tested by varying the voltage applied from 3 to 25 V during the electrowetting process. After electrowetting, it was observed that the topography of the membrane deformed from vertical alignment to a grouped pattern due to bubbles appearing during the electrowetting process, indicating the occurrence of electrolysis. For the droplet size ranging from 2 to 3.5 μl, the contact angle (CA) for smaller droplets reduced more dramatically than for larger droplets at the same voltage, and the contact angle saturation condition also varied in response to the droplet size. To reveal the droplet size effect, the Young-Lippmann equation is modified to simulate CA reduction on a MWCNT membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142. doi:10.1021/nl0348185

    Article  Google Scholar 

  2. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948. doi:10.1021/nl050493b

    Article  Google Scholar 

  3. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860. doi:10.1002/adma.200290020

    Article  Google Scholar 

  4. Prins MWJ, Welters WJJ, Weekamp JW (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291:277–280. doi:10.1126/science.291.5502.277

    Article  Google Scholar 

  5. Kakade BA, Pillai VK (2008) Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization. J Phys Chem C 112:3183–3186. doi:10.1021/jp711657f

    Article  Google Scholar 

  6. Zou L, Ma N, Sun M, Ji T (2014) Two kinds of composite films: graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process. Solid State Sci 37:91–95. doi:10.1016/j.solidstatesciences.2014.08.012

    Article  Google Scholar 

  7. Tie L, Guo Z, Liu W (2015) PH-manipulated underwater–oil adhesion wettability behavior on the micro/nanoscale semicircular structure and related thermodynamic analysis. ACS Appl Mater Interfaces 7:10641–10649. doi:10.1021/acsami.5b03533

    Article  Google Scholar 

  8. Tie L, Guo Z, Li W (2014) Optimal design of superhydrophobic surfaces using a paraboloid microtexture. J Colloid Interface Sci 436:19–28. doi:10.1016/j.jcis.2014.09.009

    Article  Google Scholar 

  9. Wang Z, Ci L, Chen L, Nayak S, Ajayan PM, Koratkar N (2007) Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett 7:697–702. doi:10.1021/nl062853g

    Article  Google Scholar 

  10. Guo Z, Su B (2011) Electricity-driven wettability with a low threshold voltage. Appl Phys Lett 99:082106–082108. doi:10.1063/1.3628457

    Article  Google Scholar 

  11. Wang HZ, Huang ZP, Cai QJ, Kulkarni K, Chen CL, Carnahan D, Ren ZF (2010) Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes. Carbon 48:868–875. doi:10.1016/j.carbon.2009.10.041

    Article  Google Scholar 

  12. Mo Y, Yan D, Huang F (2014) Mechanical and wettability properties of chemically modified surface texture with carbon nanotubes. Appl Phys A 114:1387–1392. doi:10.1007/s00339-013-8015-6

    Article  Google Scholar 

  13. Li J, Ling J, Yan L, Wang Q, Zha F, Lei Z (2014) UV/mask irradiation and heat induced switching on-off water transportation on superhydrophobic carbon nanotube surfaces. Surf Coat Technol 258:142–145. doi:10.1016/j.surfcoat.2014.09.040

    Article  Google Scholar 

  14. Li P, Lim X, Zhu Y, Yu T, Ong CK, Shen Z, Wee ATS, Sow CH (2007) Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly. J Phys Chem B 111:1672–1678. doi:10.1021/jp066781t

    Article  Google Scholar 

  15. Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed 43:4663–4666. doi:10.1002/anie.200460774

    Article  Google Scholar 

  16. Roy S, Bhadra M, Mitra S (2014) Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep Purif Technol 136:58–65. doi:10.1016/j.seppur.2014.08.009

    Article  Google Scholar 

  17. Wu X, Xu H, Xu P, Shen Y, Lu L, Shi J, Fu J, Zhao H (2014) Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. J Power Sources 263:104–109. doi:10.1016/j.jpowsour.2014.04.035

    Article  Google Scholar 

  18. Saranya R, Arthanareeswaran G, Dionysiou DD (2014) Treatment of paper mill effluent using Polyethersulfone/functionalized multiwalled carbon nanotubes based nanocomposite membranes. Chem Eng J 236:369–377. doi:10.1016/j.cej.2013.09.096

    Article  Google Scholar 

  19. Zanin H, Saito E, Ceragioli HJ, Baranauskas V, Corat EJ (2014) Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices. Mater Res Bull 49:487–493. doi:10.1016/j.materresbull.2013.09.033

    Article  Google Scholar 

  20. Yang J, Zhang Z, Men X, Xu X, Zhu X (2011) Thermo-responsive surface wettability on a pristine carbon nanotube film. Carbon 49:19–23. doi:10.1016/j.carbon.2010.08.033

    Article  Google Scholar 

  21. Hanumansetty S, O’Rear E, Resasco DE (2015) Hydrophilic encapsulation of multi-walled carbon nanotubes using admicellar polymerization. Colloids Surf A 474:1–8. doi:10.1016/j.colsurfa.2015.02.047

    Article  Google Scholar 

  22. Rouhollah S, Sorina H, Mohsen A (2015) Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomater Sci 3:695–711. doi:10.1039/c4bm00421c

    Article  Google Scholar 

  23. Pu J, Wan SW, Lu Z, Zhang G, Wang L, Zhang X, Xue Q (2013) Controlled water adhesion and electrowetting of conducting hydrophobic graphene/carbon nanotubes composite films on engineering materials. J Mater Chem A1:1254–1260. doi:10.1039/c2ta00344a

    Article  Google Scholar 

  24. Kakade B, Mehta R, Durge A, Kulkarni S, Pillai V (2008) Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett 8:2693–2696. doi:10.1021/nl801012r

    Article  Google Scholar 

  25. Tan X, Zhou Z, Cheng MMC (2012) Electrowetting on dielectric experiments using graphene. Nanotechnology 23:375501–375508. doi:10.1088/0957-4484/23/37/375501

    Article  Google Scholar 

  26. Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci USA 101:4009–4012. doi:10.1073/pnas.0400734101

    Article  Google Scholar 

  27. Bertossi R, Caney N, Gruss JA, Dijon J, Fournier A, Marty P (2015) Influence of carbon nanotubes on deionized water pool boiling performances. Exp Therm Fluid Sci 61:187–193. doi:10.1016/j.expthermflusci.2014.10.028

    Article  Google Scholar 

  28. Aoki KJ, Li C, Nishiumi T, Chen J (2013) Electrolysis of pure water in a thin layer cell. J Electroanal Chem 695:24–29. doi:10.1016/j.jelechem.2013.02.020

    Article  Google Scholar 

  29. Ma H (2015) Oscillating heat pipes. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundamental Research Funds for the Central Universities (No. 3132015033), Scientific Study Project for Institutes of Higher Learning, Ministry of Education, Liaoning Province (No. L2014195), and the National Natural Science Foundation of China (No. 51376027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Ma, H., Tian, B. et al. Electrowetting on a multi-walled carbon nanotube membrane with different droplet sizes in an electric field. J Mater Sci 51, 4031–4036 (2016). https://doi.org/10.1007/s10853-016-9721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9721-1

Keywords

Navigation