Skip to main content
Log in

Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Neutron Bragg-edge imaging was applied for the visualization of a γ-austenite to α′-martensite phase transformation. In the present study, a super martensitic stainless steel sample was heated until complete austenitization and was subsequently cooled down to room temperature. The martensitic phase transformation started at M s = 190 °C. Using a monochromatic neutron beam with λ = 0.390 nm, the transmitted intensity was significantly reduced during cooling below M s, since the emerging martensitic phase has a higher attenuation coefficient than the austenitic phase at this wavelength. The phase transformation process was visualized by filming the transmission images from a scintillator screen with a CCD camera with a temporal resolution of 30 s and a spatial resolution of 100 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Santisteban JR, Edwards L, Fitzpatrick ME, Steuwer A, Withers PJ, Daymond MR, Johnson MW, Rhodes N, Schooneveld EM (2002) Strain imaging by Bragg edge neutron transmission. Nucl Instrum Methods Phys Res A 481:765–768

    Article  Google Scholar 

  2. Woracek R, Penumadu D, Kardjilov N, Hilger A, Strobl M, Wimpory RC, Manke I, Banhart J (2011) Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading. J Appl Phys 109:093506-1–093506-4

    Article  Google Scholar 

  3. Strobl M, Woracek R, Kardjilov N, Hilger A, Wimpory R, Tremsin A, Wilpert T, Schulz C, Manke I, Penumadu D (2012) Time-of-flight neutron imaging for spatially resolved strain investigations based on Bragg edge transmission at a reactor source. Nucl Instrum Methods Phys Res A 680:27–34

    Article  Google Scholar 

  4. Steuwer A, Withers PJ, Santisteban JR, Edwards L, Bruno G, Fitzpatrick ME, Daymond MR, Johnson MW, Wang D (2001) Bragg edge determination for accurate lattice parameter and elastic strain measurement. Phys Status Solidi (a) 185:221–230

    Article  Google Scholar 

  5. Santisteban JR, Edwards L, Stelmukh V (2006) Characterization of textured materials by TOF transmission. Physica B 385–386(Part 1):636–638

    Article  Google Scholar 

  6. Iwase K, Nagata T, Sakuma K, Takada O, Kamiyama T, Kiyanagi Y (2007) Texture analysis using Bragg-edge neutron transmission method. In: Nuclear science symposium conference record, 2007. NSS’07. IEEE, p 1716–1719

  7. Sato H, Takada O, Iwase K, Kamiyama T, Kiyanagi Y (2010) Imaging of a spatial distribution of preferred orientation of crystallites by pulsed neutron Bragg edge transmission. J Phys Conf Ser 251:012070

    Article  Google Scholar 

  8. Vogel S (2000) A Rietveld-approach for the analysis of neutron time-of-flight transmission data. Mathematisch-Naturwissenschaftliche Fakultät, Uni Kiel, Kiel, p 174

    Google Scholar 

  9. Steuwer A, Withers PJ, Santisteban JR, Edwards L (2005) Using pulsed neutron transmission for crystalline phase imaging and analysis. J Appl Phys 97:074903-1–074903-8

    Article  Google Scholar 

  10. Santisteban JR, Edwards L, Fizpatrick ME, Steuwer A, Withers PJ (2002) Engineering applications of Bragg-edge neutron transmission. Appl Phys A 74:s1433–s1436

    Article  Google Scholar 

  11. Steuwer A, Santisteban JR, Withers PJ, Edwards L (2004) Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission. Physica B 350:159–161

    Article  Google Scholar 

  12. Bourke MAM, Maldonado JG, Masters D, Meggers K, Priesmeyer HG (1996) Real time measurement by Bragg edge diffraction of the reverse (α′ → γ) transformation in a deformed 304 stainless steel. Mater Sci Eng A 221:1–10

    Article  Google Scholar 

  13. Huang J, Vogel SC, Poole WJ, Militzer M, Jacques P (2007) The study of low-temperature austenite decomposition in a Fe–C–Mn–Si steel using the neutron Bragg edge transmission technique. Acta Mater 55:2683–2693

    Article  Google Scholar 

  14. Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J, Manke I (2015) Neutron Bragg edge tomography for phase mapping. Phys Procedia 69:227–236

    Article  Google Scholar 

  15. Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J, Manke I (2014) 3D mapping of crystallographic phase distribution using energy-selective neutron tomography. Adv Mater 4069–4073

  16. Kardjilov N, Manke I, Hilger A, Williams S, Strobl M, Woracek R, Boin M, Lehmann E, Penumadu D, Banhart J (2012) Neutron Bragg-edge mapping of weld seams. Int J Mater Res 103:151–154

    Article  Google Scholar 

  17. Lehmann EH, Frei G, Vontobel P, Josic L, Kardjilov N, Hilger A, Kockelmann W, Steuwer A (2009) The energy-selective option in neutron imaging. Nucl Instrum Methods Phys Res A 603:429–438

    Article  Google Scholar 

  18. Lehmann E, Peetermans S, Josic L, Leber H, van Swygenhoven H (2014) Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials. Nucl Instrum Methods Phys Res A 735:102–109

    Article  Google Scholar 

  19. Kannengiesser T, Kromm A, Rethmeier M, Gibmeier J, Genzel C (2009) Residual stresses and in situ measurement of phase transformation in low transformation temperature (LTT) welding materials. Adv X-Ray Anal 52:755–762

    Google Scholar 

  20. Tateyama Y, Ohno T (2003) Atomic-scale effects of hydrogen in iron toward hydrogen embrittlement: ab-initio study. ISIJ Int 43:573–578

    Article  Google Scholar 

  21. Kardjilov N, Hilger A, Manke I, Woracek R, Banhart J (2016) CONRAD-2: the new neutron imaging instrument at the Helmholtz-Zentrum Berlin. J Appl Crystallogr 195–202

  22. Kardjilov N, Dawson M, Hilger A, Manke I, Strobl M, Penumadu D, Kim FH, Garcia-Moreno F, Banhart J (2011) A highly adaptive detector system for high resolution neutron imaging. Nucl Instrum Methods A 651:95–99

    Article  Google Scholar 

  23. Carrouge D (2002) Phase transformations in welded super martensitic stainless steels. Department of Materials Science and Metallurgy, University of Cambridge

  24. Alexandrov BT, Lippold JC (2010) In situ determination of phase transformations and structural changes during non-equilibrium material processing. In: Kannengiesser T, Babu SS, Komizo Y-I, Ramirez JA (eds) In-situ studies with photons, neutrons and electrons scattering. Springer, Heidelberg, pp 113–131

    Chapter  Google Scholar 

  25. Rasband WS (1997–2016) ImageJ. U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/

  26. Griesche A, Solórzano E, Beyer K, Kannengiesser T (2013) The advantage of using in situ methods for studying hydrogen mass transport: neutron radiography vs. carrier gas hot extraction. Int J Hydrog Energy 38:14725–14729

    Article  Google Scholar 

  27. Dabah E, Kannengiesser T, Eliezer D, Boellinghaus T (2012) In situ synchrotron X-ray radiation analysis of hydrogen behavior in stainless steel subjected to continuous heating. J Mater Sci 47:5879–5885. doi:10.1007/s10853-012-6489-9

    Article  Google Scholar 

  28. Kardjilov N, Schillinger B, Steichele E (2004) Energy-selective neutron radiography and tomography at FRM. Appl Radiat Isot 61:455–460

    Article  Google Scholar 

  29. Boin M (2012) nxs: a program library for neutron cross section calculations. J Appl Crystallogr 45:603–607

    Article  Google Scholar 

  30. Boin M, Hilger A, Kardjilov N, Zhang SY, Oliver EC, James JA, Randau C, Wimpory RC (2011) Validation of Bragg edge experiments by Monte Carlo simulations for quantitative texture analysis. J Appl Crystallogr 44:1040–1046

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Helmholtz-Zentrum Berlin for the allocation of neutron radiation beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Pfretzschner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabah, E., Pfretzschner, B., Schaupp, T. et al. Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel. J Mater Sci 52, 3490–3496 (2017). https://doi.org/10.1007/s10853-016-0642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0642-9

Keywords

Navigation