Skip to main content
Log in

Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple facile method, i.e., thermal decarbonation of ZnCO3 hydroxides, was used to prepare a series of pure ZnO photocatalysts with controlled crystallite sizes, particle sizes, and morphologies. The ZnCO3 precursor was synthesized by direct wet carbonation in the presence of growth-control additives, i.e., organic solvents, surfactants, and low molecular weight polymers. The thermal decarbonation allows for producing ZnO photocatalysts with sizes and shapes varying from 80 ± 20 nm nonporous rhombohedral nanoparticles to 5 ± 0.5 µm porous particles, for a constant crystallite size of 64 ± 3 nm. The porous ZnO particles (5 ± 0.5 µm) exhibit two times larger photocatalytic activity for methanol oxidation than the nonporous ZnO nanoparticles (~180 ± 30 nm). The reasons for the higher photocatalytic activity are further investigated in this work. A possible mechanism for the formation of ZnCO3 hydroxides and their transformation into porous microsized ZnO particles and nonporous nanoparticles are carefully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625. doi:10.1002/smll.200700043

    Article  Google Scholar 

  2. Lee HU, Lee SC, Lee Y-C et al (2014) Innovative three-dimensional (3D) eco-TiO2 photocatalysts for practical environmental and bio-medical applications. Sci Rep 4:6740. doi:10.1038/srep06740

    Article  Google Scholar 

  3. McLaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541. doi:10.1021/ja9052703

    Article  Google Scholar 

  4. Jang ES, Won J-H, Hwang S-J, Choy J-H (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312. doi:10.1002/adma.200601455

    Article  Google Scholar 

  5. Zhao T, Zhao Y, Jiang L (2013) Nano-/microstructure improved photocatalytic activities of semiconductors. Philos Trans A Math Phys Eng Sci 371:20120303. doi:10.1098/rsta.2012.0303

    Article  Google Scholar 

  6. Becker J, Raghupathi KR, St. Pierre J et al (2011) Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J Phys Chem C 115:13844–13850. doi:10.1021/jp2038653

    Article  Google Scholar 

  7. Dodd AC, McKinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanopart Res 8:43–51. doi:10.1007/s11051-005-5131-z

    Article  Google Scholar 

  8. Manikandan E, Moodley MK, Sinha Ray S et al (2010) Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition technique. J Nanosci Nanotechnol 10:5602–5611

    Article  Google Scholar 

  9. Park KT, Xia F, Kim SW et al (2013) Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J Phys Chem C 117:1037–1043. doi:10.1021/jp310428r

    Article  Google Scholar 

  10. Wang Y, Li X, Wang N et al (2008) Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep Purif Technol 62:727–732. doi:10.1016/j.seppur.2008.03.035

    Article  Google Scholar 

  11. Lao JY, Huang JY, Wang DZ, Ren ZF (2003) ZnO nanobridges and nanonails. Nano Lett 3:235–238. doi:10.1021/nl025884u

    Article  Google Scholar 

  12. Zhao F, Zheng J-G, Yang X et al (2010) Complex ZnO nanotree arrays with tunable top, stem and branch structures. Nanoscale 2:1674. doi:10.1039/c0nr00076k

    Article  Google Scholar 

  13. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials (Basel) 7:2833–2881. doi:10.3390/ma7042833

    Article  Google Scholar 

  14. Mahmud S, Abdullah M, Putrus G et al (2006) Nanostructure of ZnO fabricated via French process and its correlation to electrical properties of semiconducting varistors. Synth React Inorg Met-Org Nano-Met Chem 36:155–159

    Article  Google Scholar 

  15. Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22. doi:10.1016/j.cej.2012.01.076

    Article  Google Scholar 

  16. Clament Sagaya Selvam N, Vijaya JJ, Kennedy LJ (2012) Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind Eng Chem Res 51:16333–16345. doi:10.1021/ie3016945

    Article  Google Scholar 

  17. Cho S, Jung S-H, Lee K-H (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112:12769–12776. doi:10.1021/jp803783s

    Article  Google Scholar 

  18. Wang J, Lee Y-J, Hsu JWP (2014) One-step synthesis of ZnO Nanocrystals in n-butanol with bandgap control: applications in hybrid and organic photovoltaic devices. J Phys Chem C 118:18417–18423. doi:10.1021/jp505058u

    Article  Google Scholar 

  19. Zhang X, Qin J, Xue Y et al (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596. doi:10.1038/srep04596

    Google Scholar 

  20. McCune M, Zhang W, Deng Y (2012) High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett 12:3656–3662. doi:10.1021/nl301407b

    Article  Google Scholar 

  21. Duan X, Wang G, Wang H et al (2010) Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity. CrystEngComm 12:2821. doi:10.1039/b922679f

    Article  Google Scholar 

  22. Liu Y, Shi J, Peng Q, Li Y (2012) Self-assembly of ZnO nanocrystals into nanoporous pyramids: high selective adsorption and photocatalytic activity. J Mater Chem 22:6539. doi:10.1039/c2jm16729h

    Article  Google Scholar 

  23. Xie H, Li Y, Jin S et al (2010) Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity. J Phys Chem C 114:9706–9712. doi:10.1021/jp102525y

    Article  Google Scholar 

  24. Barhoum A, Ibrahim HM, Hassanein TF et al (2014) Preparation and characterization of ultra-hydrophobic calcium carbonate nanoparticles. IOP Conf Ser Mater Sci Eng 64:12037. doi:10.1088/1757-899X/64/1/012037

    Article  Google Scholar 

  25. Nguyen T-D, Do T-O (2011) Nanocrystal. doi:10.5772/703

    Google Scholar 

  26. LaGrow AP, Ingham B, Toney MF, Tilley RD (2013) Effect of surfactant concentration and aggregation on the growth kinetics of nickel nanoparticles. J Phys Chem C 117:16709–16718. doi:10.1021/jp405314g

    Article  Google Scholar 

  27. El-Sheikh SM, Barhoum A, El-Sherbiny S et al (2014) Preparation of superhydrophobic nanocalcite crystals using Box–Behnken design. Arab J Chem. doi:10.1016/j.arabjc.2014.11.003

    Google Scholar 

  28. Qi X, Balankura T, Zhou Y, Fichthorn KA (2015) How structure-directing agents control nanocrystal shape: polyvinylpyrrolidone-mediated growth of Ag nanocubes. Nano Lett 15:7711–7717. doi:10.1021/acs.nanolett.5b04204

    Article  Google Scholar 

  29. Bullen CR, Mulvaney P (2004) Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett 4:2303–2307. doi:10.1021/nl0496724

    Article  Google Scholar 

  30. Barhoum A, Rehan MF, Rahier H et al (2016) Seed-mediated hot injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism. ACS Appl Mater Interfaces. doi:10.1021/acsami.5b10405

    Google Scholar 

  31. van Embden J, Mulvaney P (2005) Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 21:10226–10233. doi:10.1021/la051081l

    Article  Google Scholar 

  32. Potti PR, Srivastava VC (2012) Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity. Ind Eng Chem Res 51:7948–7956. doi:10.1021/ie300478y

    Article  Google Scholar 

  33. Holzwarth U, Gibson N (2011) The Scherrer equation versus the “Debye–Scherrer equation. Nat Nanotechnol. doi:10.1038/nnano.2011.145

    Google Scholar 

  34. Christy AA, Kvalheim OM, Velapoldi RA (1995) Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka–Munk equation. Vib Spectrosc 9:19–27. doi:10.1016/0924-2031(94)00065-O

    Article  Google Scholar 

  35. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    Article  Google Scholar 

  36. Fateh R, Dillert R, Bahnemann D (2014) Self-cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO(2)–ZnO coatings on polycarbonate. ACS Appl Mater Interfaces 6:2270–2278. doi:10.1021/am4051876

    Article  Google Scholar 

  37. Moghaddam J, Ghaffari SB, Sarraf-Mamoory R, Mollaesmail S (2014) The study on the crystallization conditions of Zn5(OH)6(CO3)2 and its effect on precipitation of ZnO nanoparticles from purified zinc ammoniacal solution. Synth React Inorg Met-Org Nano-Met Chem 44:895–901. doi:10.1080/15533174.2012.740738

    Article  Google Scholar 

  38. Kanari N, Mishra D, Gaballah I, Dupré B (2004) Thermal decomposition of zinc carbonate hydroxide. Thermochim Acta 410:93–100. doi:10.1016/S0040-6031(03)00396-4

    Article  Google Scholar 

  39. El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Coll Surf A Physicochem Eng Asp 422:44–49. doi:10.1016/j.colsurfa.2013.01.020

    Article  Google Scholar 

  40. Barhoum A, Van Lokeren L, Rahier H et al (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50:7908–7918. doi:10.1007/s10853-015-9327-z

    Article  Google Scholar 

  41. Barhoum A, Rahier H, Abou-Zaied RE et al (2014) Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Interfaces 6:2734–2744. doi:10.1021/am405278j

    Article  Google Scholar 

  42. Barhoum A, Van Assche G, Makhlouf ASH et al (2015) A green, simple chemical route for the synthesis of pure nanocalcite crystals. Cryst Growth Des 15:573–580. doi:10.1021/cg501121t

    Article  Google Scholar 

  43. Kumar SG, Rao KSRK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351. doi:10.1039/C4RA13299H

    Article  Google Scholar 

  44. Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822. doi:10.1126/science.1164271

    Article  Google Scholar 

  45. Song R-Q, Cölfen H (2011) Additive controlled crystallization. CrystEngComm 13:1249. doi:10.1039/c0ce00419g

    Article  Google Scholar 

  46. Peng Y, Wang F, Wang Z et al (2015) Two-step nucleation mechanism in solid–solid phase transitions. Nat Mater 14:101–108. doi:10.1038/nmat4083

    Article  Google Scholar 

  47. Kawasaki T, Tanaka H (2010) Formation of a crystal nucleus from liquid. Proc Natl Acad Sci U S A 107:14036–14041. doi:10.1073/pnas.1001040107

    Article  Google Scholar 

  48. Sun Y, Wang L, Yu X, Chen K (2012) Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14:3199. doi:10.1039/c2ce06335b

    Article  Google Scholar 

  49. Panmand RP, Sethi YA, Kadam SR et al (2015) Self-assembled hierarchical nanostructures of Bi2WO6 for hydrogen production and dye degradation under solar light. CrystEngComm 17:107–115. doi:10.1039/C4CE01968G

    Article  Google Scholar 

  50. Shi W, Huo L, Wang H et al (2006) Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17:2918–2924. doi:10.1088/0957-4484/17/12/016

    Article  Google Scholar 

  51. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. doi:10.1021/cr400544s

    Article  Google Scholar 

  52. Wang F, Wang X (2014) Mechanisms in the solution growth of free-standing two-dimensional inorganic nanomaterials. Nanoscale 6:6398–6414. doi:10.1039/c4nr00973h

    Article  Google Scholar 

  53. Jradi K, Maury C, Daneault C (2015) Contribution of TEMPO-oxidized cellulose gel in the formation of flower-like zinc oxide superstructures: characterization of the TOCgel/ZnO composite films. Appl Sci 5:1164–1183. doi:10.3390/app5041164

    Article  Google Scholar 

  54. Hong L, Li Q, Lin H, Li Y (2009) Synthesis of flower-like silver nanoarchitectures at room temperature. Mater Res Bull 44:1201–1204. doi:10.1016/j.materresbull.2009.01.017

    Article  Google Scholar 

  55. Bhattacharyya L, Rohrer JS (2012) Applications of ion chromatography for pharmaceutical and biological products. Wiley, Hoboken

    Book  Google Scholar 

  56. Vos JG, Forster RJ, Keyes TE (2003) Interfacial supramolecular assemblies. Wiley, Chichester

    Book  Google Scholar 

  57. Wang Y, Jiang Z-H, Yang F-J (2006) Preparation and photocatalytic activity of mesoporous TiO2 derived from hydrolysis condensation with TX-100 as template. Mater Sci Eng B 128:229–233. doi:10.1016/j.mseb.2005.12.004

    Article  Google Scholar 

  58. Moezzi A, Cortie M, Dowd A, McDonagh A (2014) On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate. J Nanoparticle Res 16:2344. doi:10.1007/s11051-014-2344-z

    Article  Google Scholar 

  59. Dollimore D, France JA, Krupay BW, Whitehead R (1980) Kinetic aspects of the thermal decomposition of zinc carbonate. Thermochim Acta 36:343–349. doi:10.1016/0040-6031(80)87029-8

    Article  Google Scholar 

  60. Yang L, Liu Z (2007) Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energy Convers Manag 48:882–889. doi:10.1016/j.enconman.2006.08.023

    Article  Google Scholar 

  61. Wang C, Rabani J, Bahnemann DW, Dohrmann JK (2002) Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J Photochem Photobiol A Chem 148:169–176. doi:10.1016/S1010-6030(02)00087-4

    Article  Google Scholar 

  62. Park Y, Kim W, Monllor-Satoca D et al (2013) Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2. J Phys Chem Lett 4:189–194. doi:10.1021/jz301881d

    Article  Google Scholar 

  63. Sun Y-F, Liu S-B, Meng F-L et al (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors (Basel) 12:2610–2631. doi:10.3390/s120302610

    Article  Google Scholar 

  64. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:140919080959008. doi:10.1021/cr5001892

    Article  Google Scholar 

  65. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. doi:10.1021/cr00033a003

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed during research stay of Dr. Ahmed Barhoum at Institute of Technical Chemistry, Leibniz Universität Hannover and Institut Européen des Membranes, Université Montpellier, France. The authors would like to thank the FWO-Research Foundation Flanders (Grant No V450315N and V423116N), Strategic Initiative Materials in Flanders (SBO- Project No. 130529 - Insitu), European Regional Development Fund (Nanokomp as part of the program “Europa fördert Niedersachsen”; Grant No. WA3-80125215), and ERLUS AG for financial support. Note that the authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Barhoum or Guy Van Assche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barhoum, A., Melcher, J., Van Assche, G. et al. Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52, 2746–2762 (2017). https://doi.org/10.1007/s10853-016-0567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0567-3

Keywords

Navigation