Skip to main content
Log in

Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, different contents of molybdenum oxide/tungsten oxide (MoO3/WO3) composite nanostructures were synthesized by hydrothermal method. Field emission scanning electron microscopy images revealed that the morphologies of WO3 nanostructures were significantly influenced by the Mo amount. Furthermore, the introduction strategy of MoO3 into WO3 could effectively improve the gas sensing properties. Especially, the sensor based on the 4 mol% MoO3/WO3 composite nanostructures exhibited enhanced gas sensing performance, giving a low limit of detection (500 ppb). It shows high responses of 28.5 and 18.2–100 ppm ethanol and acetone at the operating temperature of 320 °C, which were about 2.3 and 1.7 times higher than those of the pure WO3, respectively. The enhanced sensing properties of MoO3/WO3 gas sensor can be attributed to the addition of MoO3, which has been discussed in relation to the gas sensing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kim YS, Ha SC, Yang H, Kim YT (2007) Gas sensor measurement system capable of sampling volatile organic compounds (VOCs) in wide concentration range. Sens Actuator B 122:211–218

    Article  Google Scholar 

  2. Dar GN, Umar A, Zaidi SA, Ibrahim AA, Abaker M, Baskoutas S (2012) Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens Actuators B 173:72–78

    Article  Google Scholar 

  3. Rakshit T, Santra S, Manna I, Ray SK (2014) Enhanced sensitivity and selectivity of brush-like SnO2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. RSC Adv 4:36749–36756

    Article  Google Scholar 

  4. Rai P, Majhi SM, Yu Y-T, Lee J-H (2015) Synthesis of plasmonic Ag@SnO2 core–shell nanoreactors for xylene detection. RSC Adv 5:17653–17659

    Article  Google Scholar 

  5. Jia QQ, Ji HM, Zhang Y, Chen YL, Sun XH, Jin ZF (2014) Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J Hazard Mater 276:262–270

    Article  Google Scholar 

  6. Shin J, Choi SJ, Youn DY, Kim D (2012) Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J Electroceram 29:106–116

    Article  Google Scholar 

  7. Zeng Y, Zhang T, Wang LJ, Kang MH, Fan HT, Wang R, He Y (2009) Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sens Actuators B 140:73–78

    Article  Google Scholar 

  8. Rani RA, Zoolfakar AS, Ou JZ, Field MR, Austin M, Kalantar-zhadeh K (2013) Nanoporous Nb2O5 hydrogen gas sensor. Sens Actuators B 176:149–156

    Article  Google Scholar 

  9. Mao YZ, Ma S, Li XB, Wang CY, Li FM (2014) Effect of Mn doping on the microstructures and sensing properties of ZnO nanofibers. Appl Surf Sci 298:109–115

    Article  Google Scholar 

  10. Dong CJ, Xing XX, Chen N, Liu X, Wang YD (2016) Biomorphic synthesis of hollow CuO fibers for low-ppm-level n-propanol detection via a facile solution combustion method. Sens Actuators B 230:1–8

    Article  Google Scholar 

  11. Sun P, Wang C, Liu JY, Zhou X, Li XW, Hu XL, Lu GY (2015) Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl Mater Interfaces 7:19119–19125

    Article  Google Scholar 

  12. Vuong NM, Hieu NM, Kim D, Choi B, Kim M (2014) Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl Surf Sci 317:765–770

    Article  Google Scholar 

  13. Wang ZY, Sun P, Yang TL, Gao Y, Li XW, Lu GY, Du Y (2013) Flower-like WO3 architectures synthesized via a microwave-assisted method and their gas sensing properties. Sens Actuator B 186:734–740

    Article  Google Scholar 

  14. Wang C, Sun R, Li X, Sun YF, Sun P, Liu FM, Lu GY (2014) Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens Actuator B 204:224–230

    Article  Google Scholar 

  15. Zeng J, Hu M, Wang WD, Chen HQ, Qin YX (2012) NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens Actuator B 161:447–452

    Article  Google Scholar 

  16. Zhang YD, He WW, Zhao HX, Li PJ (2013) Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95:30–34

    Article  Google Scholar 

  17. Xu LJ, Yin ML, Liu SZ (2015) Superior sensor performance from Ag@WO3 core–shell nanostructure. J Alloys Compd 623:127–131

    Article  Google Scholar 

  18. Kida T, Nishiyama A, Hua ZQ, Suematsu K, Yuasa M (2014) WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30:2571–2579

    Article  Google Scholar 

  19. Chi X, Liu CB, Li Y, Wang ZJ, Bo XQ, Liu LL, Su C (2014) Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sens Actuator B 194:33–37

    Article  Google Scholar 

  20. Yang XJ, Salles V, Kaneti Y, Liu MS, Maillard M, Journet C, Jiang XC, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuator B 220:1112–1119

    Article  Google Scholar 

  21. Zhao XD, Ji HM, Jia QQ, Wang MJ (2015) A nanoscale Co3O4–WO3 p–n junction sensor with enhanced acetone responsivity. J Mater Sci 26:8217–8223. doi:10.1007/s10854-015-3484-3

    Google Scholar 

  22. Wang CY, Ma SY, Sun A, Qin R, Yang FC, Li XB (2014) Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens Actuator B 193:326–333

    Article  Google Scholar 

  23. Sun P, Zhou X, Wang C, Wang B, Xu XM, Lu GY (2014) One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens Actuators B 190:32–39

    Article  Google Scholar 

  24. Lu YY, Zhan WW, He Y, Wang YT, Kong XJ, Kuang Q, Xie ZX, Zheng LS (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interface 6:4186–4195

    Article  Google Scholar 

  25. Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang XL, Gu CD, Tu JP (2016) Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J Colloid Interface Sci 465:112–120

    Article  Google Scholar 

  26. Zhou D, Xie D, Shi F, Wang DH, Ge X, Xia XH, Wang XL, Gu CD, Tu JP (2015) Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. J Colloid Interface Sci 460:200–208

    Article  Google Scholar 

  27. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 124:103–110

    Article  Google Scholar 

  28. Swiatowska-Mrowiecka J, de Diesbach S, Maurice V, Zanna S, Klein L, Briand E, Vickridge I, Marcus P (2008) Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C 112:11050–11058

    Article  Google Scholar 

  29. Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, Jiang XC, Yu A (2014) Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2:13283–13292

    Article  Google Scholar 

  30. Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuator B 138:168–173

    Article  Google Scholar 

  31. Huang JR, Xu XJ, Gu CP, Yang M, Yang M, Liu JH (2011) Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J Mater Chem 21:12283–13289

    Google Scholar 

  32. Sun P, Wang WN, Liu YP, Sun YF, Ma J, Lu GY (2012) Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens Actuator B 173:52–57

    Article  Google Scholar 

  33. Alenezi MR, Henley SJ, Emerson NG, Silva RP (2014) From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6:235–247

    Article  Google Scholar 

  34. Jia QQ, Ji HM, Gao P, Bai X, Jin ZG (2015) Control of the acetone sensitive and selective properties of WO3 nanofibers by doping Co ions: effect of crystal symmetric structure on the responsivity of gas–solid boundaries for gas sensor. J Mater Sci 26:5792–5802. doi:10.1007/s10854-015-3138-5

    Google Scholar 

  35. Gao P, Ji HM, Zhou YG, Li XL (2012) Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Film 520:3100–3106

    Article  Google Scholar 

  36. Xiao JK, Song CW, Dong W, Li C, Yin YY, Zhang XN, Song MY (2015) Synthesis, characterization, and gas sensing applications of WO3 nanobricks. J Mater Eng Perform 24:3026–3031

    Article  Google Scholar 

  37. Yao Y, Ji FX, Yin ML, Ren XP, Ma Q, Yan JQ (2016) Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors. ACS Appl Mater Interface 8:18165–18172

    Article  Google Scholar 

  38. Li XX, Zhang GY, Cheng FY, Guo B, Chen J (2006) Synthesis, characterization, and gas-sensor application of WO3 nanocuboids. J Electrochem Soc 153:H133–H137

    Article  Google Scholar 

  39. Labidi A, Gillet E, Delamare R, Maaref M, Aguir K (2006) Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens Actuator B 120:338–345

    Article  Google Scholar 

  40. Ahsan M, Ahmad MZ, Tesfamichael T, Bell J, Wlodarski W, Motta N (2012) Low temperature response of nanostructured tungsten oxide thin films toward hydrogen and ethanol. Sens Actuator B 173:789–796

    Article  Google Scholar 

  41. Chen YJ, Zhu CL, Shi XL, Cao MS, Jin HB (2008) The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19:205603

    Article  Google Scholar 

  42. Zhu CL, Chen YJ, Wang RX, Wang LJ, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens Actuator B 140:185–189

    Article  Google Scholar 

  43. Sun P, Cai YX, Du SS, Xu XM, You L, Ma J, Liu FM, Liang XS, Sun YF, Lu GY (2013) Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens Actuator B 182:336–343

    Article  Google Scholar 

  44. Majhi Bertouluzzi L, Tietwyk KJ, Ginsburg A, Keller DA, Yaro PL, Anderson AY, Bisquert J, Zaban A (2016) Combinatorial investigation and modelling of MoO3 hole-selective contact in TiO2/Co3O/MoO3 all-oxide solar cells. Adv Mater Interface 3:1–7

    Article  Google Scholar 

  45. Lundstrom KI, Shivaraman MS, Syensson CM (1975) A hydrogen-sensitive Pd-gate MOS transistor. J Appl Phys 46:3876–3881

    Article  Google Scholar 

  46. Yu J, Wlodarski W, Li YX, Kalantar-zadeh K (2010) Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology 21:265502

    Article  Google Scholar 

  47. Liu CB, Shan H, Liu L, Li SC, Li HY (2014) High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram Int 40:2395–2399

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the support of the National Natural Science Foundation of China (51205274), Shanxi Province Science Foundation (2016011039), Shanxi Province Special Talent Fund (201605D211020), University of Science and Technology innovation Research Project of Shanxi Province (2016137), Graduate Education Innovation Fund (02100738), Science and Technology Major Project of the Shan Xi Science and Technology Department (20121101004), and Key Disciplines Construction in Colleges and Universities of Shanxi [(2012)45].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, L., Wang, Y. et al. Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52, 1561–1572 (2017). https://doi.org/10.1007/s10853-016-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0450-2

Keywords

Navigation