Skip to main content
Log in

Employing Al buffer layer with Al droplets-distributed surface to obtain high-quality and stress-free GaN epitaxial films on Si substrates

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al buffer layers with Al droplets-distributed surface have been employed to grow high-quality and stress-free GaN epitaxial films on Si substrates. The Al droplets are proved to efficiently improve the quality of as-grown GaN. On the one hand, they can act as nucleation seeds to facilitate the epitaxial growth, improving the crystalline quality and surface morphology of as-grown GaN epitaxial films. On the other hand, they also can compensate the huge compressive stress produced by Al buffer layer during the cooling process, achieving stress-free film. The density and volume of Al droplets greatly impact the properties of as-grown GaN epitaxial films. The GaN epitaxial film grown on the Al buffer layer with many small Al droplets uniformly distributed on it shows the best crystalline quality with the full-width at half maximum (FWHM) of GaN(0002) and GaN(10–12) as 0.5° and 0.7°, respectively, and flat surface with the smallest surface root-mean-square roughness of 3.8 nm. In addition, it also exhibits relatively better photoelectric properties with an FWHM of near band gap emission peak of 18 nm, carrier concentration of 2.0 × 1017 cm−3, and mobility of 137.1 cm2/Vs. This work has revealed the advantages of Al buffer layer and the important effects of buffer layer surface on achieving high-quality GaN by PLD, which is of significance for various applications of GaN-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dang S, Li C, Jia W, Liu H, Zhang Z, Li T, Liu X, Han P, Xu B (2013) Performance enhancement of GaN-based light-emitting diodes by surface plasmon coupling and scattering grating. J Mater Sci 48:5673–5679. doi:10.1007/s10853-013-7363-0

    Article  Google Scholar 

  2. O’Leary SK, Foutz BE, Shur MS, Eastman LF (2006) Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: a review. J Mater Sci 17:87–126. doi:10.1007/s10854-006-5624-2

    Google Scholar 

  3. Ahn KS, Kim DJ, Moon YT, Kim HG, Park SJ (2001) Effects of a two-step rapid thermal annealing process on Mg-doped p-type GaN films grown by metalorganic chemical vapor deposition. J Vac Sci Technol B 19:215. doi:10.1116/1.1338554

    Article  Google Scholar 

  4. Mangla O, Srivastava MP (2013) GaN nanostructures by hot dense and extremely non-equilibrium plasma and their characterizations. J Mater Sci 48:304–310. doi:10.1007/s10853-012-6746-y

    Article  Google Scholar 

  5. Li G, Wang W, Yang W, Wang H (2015) Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices. Surf Sci Rep 70:380–423

    Article  Google Scholar 

  6. Kawashima T, Yoshikawa H, Adachi S, Fuke S, Ohtsuka K (1997) Optical properties of hexagonal GaN. J Appl Phys 82:3528–3535

    Article  Google Scholar 

  7. Jones D, Lettington AH (1972) The electronic band structures of the wide band gap semiconductors GaN and A1N. Solid State Commun 11:701–705

    Article  Google Scholar 

  8. Wang H, Wang W, Yang W, Zhou S, Lin Z, Li G (2015) Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition. J Appl Phys 117:185303

    Article  Google Scholar 

  9. Li G, Wang W, Yang W, Lin Y, Wang H, Lin Z, Zhou S (2016) GaN-based light-emitting diodes on various substrates: a critical review. Rep Prog Phys 79:56501

    Article  Google Scholar 

  10. Wang W, Yang W, Lin Y, Zhou S, Li G (2015) Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures. Sci Rep 5:16453

    Article  Google Scholar 

  11. Liu L, Edgar JH (2002) Substrates for gallium nitride epitaxy. Mater Sci Eng R Rep 37:61–127

    Article  Google Scholar 

  12. Ishikawa H, Yamamoto K, Egawa T, Soga T, Jimbo T, Umeno M (1998) Thermal stability of GaN on (111) Si substrate. J Cryst Growth 189–190:178–182

    Article  Google Scholar 

  13. Venugopal R, Wan J, Melloch M, Kim G, Zank G, Tsoi S, Ramdas A (2003) Comparison of various buffer schemes to grow GaN on large-area Si(111) substrates using metal-organic chemical-vapor deposition. J Electron Mater 32:371–374

    Article  Google Scholar 

  14. Park JH, Park JH, Lee BT (2010) Effects of SiC buffer layer growth temperature on the residual strain of GaN/SiC/Si thin films. Mater Lett 64:1137–1139

    Article  Google Scholar 

  15. Man BY, Yang C, Zhuang HZ, Liu M (2007) Effects of ZnO buffer layers on the fabrication of GaN films using pulsed laser deposition. J Appl Phys 101:93519

    Article  Google Scholar 

  16. Park JH, Kim JH, Kim Y, Lee BT, Jang SJ, Moon CK, Song HJ (2003) Effects of silicon-on-insulator substrate on the residual stress within 3C-SiC/Si thin films. Appl Phys Lett 83:1989–1991

    Article  Google Scholar 

  17. Hoshino K, Yanagita N, Araki M, Tadatomo K (2007) Effect of low-temperature GaN buffer layer on the crystalline quality of subsequent GaN layers grown by MOVPE. J Cryst Growth 298:232–234

    Article  Google Scholar 

  18. Mohanta P, Singh D, Kumar R, Ganguli T, Srinivasa RS, Major SS (2013) Effect of ZnO buffer layer thickness on the epitaxial growth of GaN by reactive magnetron sputtering. Thin Solid Films 544:238–243

    Article  Google Scholar 

  19. Wang H, Wang W, Yang W, Zhu Y, Lin Z, Li G (2016) Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition. Appl Surf Sci 369:414–421

    Article  Google Scholar 

  20. Barchuk M, Röder C, Shashev Y, Lukin G, Motylenko M, Kortus J, Pätzold O, Rafaja D (2014) Correlation between the residual stress and the density of threading dislocations in GaN layers grown by hydride vapor phase epitaxy. J Cryst Growth 386:1–8

    Article  Google Scholar 

  21. Liu R, Ponce FA, Dadgar A, Krost A (2003) Atomic arrangement at the AlN/Si(111) interface. Appl Phys Lett 83:860–862

    Article  Google Scholar 

  22. Fortuin AW, Alkemade PFA, Verbruggen AH, Steinfort AJ, Zandbergen H, Radelaar S (1996) Characterization of single-crystalline Al films grown on Si(111). Surf Sci 366:285–294

    Article  Google Scholar 

  23. Bisch C, Boellaard E, Janssen GCAM, Alkemade PFA, Radelaar S (1998) Orientation of aluminum nuclei on Si(100) and Si(111). Thin Solid Films 336:84–88

    Article  Google Scholar 

  24. Yang H, Wang W, Liu Z, Yang W, Li G (2014) Epitaxial growth mechanism of pulsed laser deposited AlN films on Si (111) substrates. CrystEngComm 16:3148–3154

    Article  Google Scholar 

  25. Yang H, Wang W, Liu Z, Li G (2013) Epitaxial growth of 2 inch diameter homogeneous AlN single-crystalline films by pulsed laser deposition. J Phys D 46:105101–105106

    Article  Google Scholar 

  26. Qiu XY, Liu HW, Fang F, Ha MJ, Liu JM (2006) Phase separation and interfacial reaction of high-kHfAlOx films prepared by pulsed-laser deposition in oxygen-deficient ambient. Appl Phys Lett 88:72906

    Article  Google Scholar 

  27. Koblmueller G, Averbeck R, Geelhaar L, Riechert H, Hosler W, Pongratz P (2003) Growth diagram and morphologies of AlN thin films grown by molecular beam epitaxy. J Appl Phys 93:9591–9596

    Article  Google Scholar 

  28. Takigawa S, Furuta K, Shimizu S, Shen XQ, Kitamura T, Okumura H (2004) Growth of droplet-free AlGaN buffer layer with +c polarity by molecular beam epitaxy. Jpn J Appl Phys 43:952–957

    Article  Google Scholar 

  29. Jmerik VN, Mizerov AM, Nechaev DV, Aseev PA, Sitnikova AA, Troshkov SI, Kop’Ev PS, Ivanov SV (2012) Growth of thick AlN epilayers with droplet-free and atomically smooth surface by plasma-assisted molecular beam epitaxy using laser reflectometry monitoring. J Cryst Growth 354:188–192

    Article  Google Scholar 

  30. Xiong H, Dai JN, Hui X, Fang YY, Tian W, Fu DX, Chen CQ, Li M, He Y (2013) Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition. J Alloys Compd 554:104–109

    Article  Google Scholar 

  31. Wang W, Wang H, Yang W, Zhu Y, Li G (2016) A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD. Sci Rep 6:24448

    Article  Google Scholar 

  32. Park BG, Kumar RS, Moon ML, Kim MD, Kang TW, Yang WC, Kim SG (2015) Comparison of stress states in GaN films grown on different substrates: langasite, sapphire and silicon. J Cryst Growth 425:149–153

    Article  Google Scholar 

  33. Park BG (2015) Domain matching epitaxy of GaN films on a novel langasite substrate: an in-plane epitaxial relationship analysis. CrystEngComm 17:4455–4461

    Article  Google Scholar 

  34. Wang W, Yang W, Liu Z, Lin Y, Zhou S, Lin Z, Wang H, Qian H, Li G (2015) Synthesis of high-quality AlN films on (La, Sr) (Al, Ta)O 3 substrates by pulsed laser deposition. Mater Lett 139:483–486

    Article  Google Scholar 

  35. Chang CC, Wu XD, Ramesh R, Xi XX, Ravi TS, Venkatesan T, Hwang DM, Muenchausen RE, Foltyn S, Nogar NS (1990) Origin of surface roughness for c-axis oriented Y-Ba-Cu-O superconducting films. Appl Phys Lett 57:1814–1816

    Article  Google Scholar 

  36. Warrender JM, Aziz MJ (2007) Effect of deposition rate on morphology evolution of metal-on-insulator films grown by pulsed laser deposition. Phys Rev B 75:794–802

    Article  Google Scholar 

  37. Nootz G, Schulte A, Chernyak L, Osinsky A, Jasinski J, Benamara M, Lilientalweber Z (2002) Correlations between spatially resolved Raman shifts and dislocation density in GaN films. Appl Phys Lett 80:1355–1357

    Article  Google Scholar 

  38. Zhu D, Wallis DJ, Humphreys CJ (2013) Prospects of III-nitride optoelectronics grown on Si. Rep Prog Phys 76:106501

    Article  Google Scholar 

  39. Spaepen F (2000) Interfaces and stresses in thin films. Acta Mater 48:31–42

    Article  Google Scholar 

  40. Kim C, Robinson IK, Myoung J, Shim K, Yoo MC, Kim K (1996) Critical thickness of GaN thin films on sapphire (0001). Appl Phys Lett 69:2358–2360

    Article  Google Scholar 

  41. Parker CA, Roberts JC, Bedair SM, Reed MJ, Liu SX, El-Masry NA (1999) Determination of the critical layer thickness in the InGaN/GaN heterostructures. Appl Phys Lett 75:2776–2778

    Article  Google Scholar 

  42. Andersson TG, Chen ZG, Kulakovskii VD, Uddin A, Vallin JT (1987) Variation of the critical layer thickness with In content in strained InxGa1−xAs-GaAs quantum wells grown by molecular beam epitaxy. Appl Phys Lett 51:752–754

    Article  Google Scholar 

  43. Zhang L, Cheng K, Degroote S, Leys M, Germain M, Borghs G (2010) Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy. J Appl Phys 108:73522

    Article  Google Scholar 

  44. Kushvaha SS, Kumar MS, Yadav BS, Tyagi PK, Ojha S, Maurya KK, Singh BP (2016) Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by laser molecular beam epitaxy. CrystEngComm 18:744–753

    Article  Google Scholar 

  45. Zhao DG, Xu SJ, Xie MH, Tong SY, Yang H (2003) Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl Phys Lett 83:677–679

    Article  Google Scholar 

  46. Davydov VY, Averkiev NS, Goncharuk IN, Nelson DK (1997) Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC. J Appl Phys 82:5097–5102

    Article  Google Scholar 

  47. Zhang L, Shao Y, Hao X, Wu Y, Zhang H, Qu S, Chen X, Xu X (2011) Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template. CrystEngComm 13:5001–5004

    Article  Google Scholar 

  48. Kong W, Jiao WY, Li JC, Collar K, Kim TH, Leach JH, Brown AS (2015) Effect of strain in sputtered AlN buffer layers on the growth of GaN by molecular beam epitaxy. Appl Phys Lett 107:353

    Google Scholar 

  49. Zhang GY, Tong YZ, Yang ZJ, Jin SX, Li J, Gan ZZ (1997) Relationship of background carrier concentration and defects in GaN grown by metalorganic vapor phase epitaxy. Appl Phys Lett 71:3376–3378

    Article  Google Scholar 

  50. Shi JY, Yu LP, Wang YZ, Zhang GY, Zhang H (2002) Influence of different types of threading dislocations on the carrier mobility and photoluminescence in epitaxial GaN. Appl Phys Lett 80:2293–2295

    Article  Google Scholar 

  51. Wang W, Chua SJ, Li G (2000) The hall mobility and its relationship with persistent photoconductivity of undoped GaN. J Electron Mater 29:27–30

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Fund for Excellent Young Scholars of China (No. 51422203), National Natural Science Foundation of China (Nos. 51572091 and 51372001), Outstanding Youth Foundation of Guangdong Scientific Committee (No. S2013050013882), Key Project in Science and Technology of Guangdong Province (Nos. 2014B010119001, 2014B010121004, and 2011A080801018), and Strategic Special Funds for LEDs of Guangdong Province (Nos. 2011A081301010, 2011A081301012, and 2012A080302002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, W., Yang, W. et al. Employing Al buffer layer with Al droplets-distributed surface to obtain high-quality and stress-free GaN epitaxial films on Si substrates. J Mater Sci 52, 1318–1329 (2017). https://doi.org/10.1007/s10853-016-0427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0427-1

Keywords

Navigation