Skip to main content
Log in

Ceramic matrix composites prepared from CoAl powders

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiscale structure of two Co x Al y O z cermets was examined by a combination of XRD, SEM coupled with EDX, NMR (59Co; 27Al), and textural measurements. A strong CoAlO/CoAl cermet monolith prepared by mechanical alloying of Co and Al powders followed by hydrothermal treatment and calcination in air comprised two parts: the metal core consisting of Co and a Co–Al alloy, and the outer oxide matrix including a mixture of Co x Al3–x O4 spinel and cobalt oxides. The two parts were separated by the alumina interface protecting the metal core against the oxidation. Al2O3/CoAlO/CoAl cermet prepared by mixing the Co–Al mechanically alloyed product and pure aluminum hydroxide with subsequent hydrothermal treatment and calcination in air consisted of three main parts: (i) large cobalt-free porous alumina (ii) surrounded by Co x Al3–x O4 spinel oxides, and (iii) the inner core containing pure Co metal particles covered with the Co–Al alloy. A random distribution of metal particles in the oxide matrix provided an enhanced microwave absorption. A developed porosity ensured a high activity of the catalyst prepared from the porous cermet in the hexane dehydrogenation under microwave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810. doi:10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  2. Pugacheva EV, Borshch VN, Zhuk SY, Andreev DE, Sanin VN, Yukhvid VI (2010) SHS-produced intermetallides as catalysts for deep oxidation of carbon monoxide and hydrocarbons. Int J Self-Propagat High-Temp Synth 19:65–69. doi:10.3103/S1061386210010115

    Article  Google Scholar 

  3. Arkatova LA (2010) The deposition of coke during carbon dioxide reforming of methane over intermetallides. Catal Today 157(1):170–176. doi:10.1016/j.cattod.2010.03.003

    Article  Google Scholar 

  4. S. Pavlova, S. Tikhov, V. Sadykov, Y. Dyatlova, O. Snegurenko, V. Rogov, et al. (2004) Monolith composite catalysts based on ceramometals for partial oxidation of hydrocarbons to synthesis gas, Stud Surf Sci Catal, Nat Gas Convers VII Proc 7th Nat Gas Convers Symp: pp. 223–228. doi:10.1016/S0167-2991(04)80055-7

  5. S.F. Tikhov, V.I. Kurkin, V.A. Sadykov, E. V Slivinsky, Y.N. Dyatlova, A.E. Kuz’min, et al. (2004) Hydrogenated Zr-Fe alloys encapsulated in Al2O3/Al matrix as catalysts for Fischer–Tropsch synthesis, Stud Surf Sci Catal, Nat Gas Convers VII Proc 7th Nat Gas Convers Symp: pp. 337–342. doi:10.1016/S0167-2991(04)80074-0

  6. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. doi:10.1021/cr050972v

    Article  Google Scholar 

  7. Xanthopoulou G, Vekinis G (2000) Deep oxidation of methane using catalysts and carriers produced by self-propagating high-temperature synthesis. Appl Catal A 199:227–238. doi:10.1016/S0926-860X(99)00562-1

    Article  Google Scholar 

  8. Bolotov VA, Udalov EI, Parmon VN, Tanashev YY, Chernousov YD (2012) Pyrolysis of heavy hydrocarbons under microwave heating of catalysts and adsorbents. J Microw Power Electromagn Energy 46:39–46

    Article  Google Scholar 

  9. A. (Ramonville/France) Rousset, X. (Lanouaille/France) Devaux, Composite alumina/metal powders, cermets made from said powders, and processes of production, 5,462,903, 1955. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-adv.htm&r=22&f=G&l=50&d=PTXT&S1=5,462,903,&OS=5,462,903,&RS=5,462,903

  10. Aharon O, Bar-Ziv S, Gorni D, Cohen-Hyams T, Kaplan WD (2004) Residual stresses and magnetic properties of alumina-nickel nanocomposites. Scr Mater 50:1209–1213. doi:10.1016/j.scriptamat.2004.02.006

    Article  Google Scholar 

  11. Lu T, Pan Y (2010) Combustion synthesis of ferromagnetic Al2O3-based cermets in thermal explosion mode. J Mater Sci 45:5923–5928. doi:10.1007/s10853-010-4672-4

    Article  Google Scholar 

  12. Hosseini SN, Mousavi T, Karimzadeh F, Enayati MH (2011) Thermodynamic aspects of nanostructured CoAl intermetallic compound during mechanical alloying. J Mater Sci Technol 27:601–606. doi:10.1016/S1005-0302(11)60114-X

    Article  Google Scholar 

  13. Hosseini SN, Karimzadeh F, Enayati MH (2012) Development and characterization of CoAl–Al2O3 intermetallic matrix nanocomposite. Mater Chem Phys 136:341–346. doi:10.1016/j.matchemphys.2012.06.030

    Article  Google Scholar 

  14. Tikhov SF, Sadykov VA, Valeev KR, Salanov AN, Cherepanova SV, Bespalko YN et al (2015) Preparation of porous ceramometal composites through the stages of mechanical activation and hydrothermal partial oxidation of Me–Al powders. Catal Today. doi:10.1016/j.cattod.2014.12.009

    Google Scholar 

  15. Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Sawyer L et al (2008) Scanning electron microscopy in X-Ray microanalysis, 3rd edn. Springer, New York

    Google Scholar 

  16. Kôi Y, Tsujimura A, Hihara T, Kushida T (1961) NMR of Co59 in ferromagnetic cobalt alloys. J Phys Soc Jpn 16:574–574. doi:10.1143/JPSJ.16.574

    Article  Google Scholar 

  17. Tikhov SF, Potapova YV, Sadykov VA, Fenelonov VB, Yudaev IV, Lapina O et al (2005) Synthesis of alumina through hydrothermal oxidation of aluminum powder conjugated with surfactant-directed oriented growth. Mater Res In 9:431–446

    Google Scholar 

  18. Tikhov SF, Pakhomov NA, Nemykina EI, Salanov AN, Sadykov VA, Romanenkov VE et al (2011) Porous ceramic matrix Al2O3/Al composites as supports and precursors for catalysts and permeable materials. In: Cuppoletti J (ed) Metal Ceramic and Polymeric Composites for Various Uses. INTECH, Croatia, pp 195–210

    Google Scholar 

  19. Zolotovskii B, Buyanov R, Bukhtiyarova G, Taraban E, Murin V, Grunvald V et al (1997) Development of the technology and production of spherical alumina for catalysts supports and adsorbents. Russ J Appl Chem 70:299–306 (in Russian)

    Google Scholar 

  20. Cherepanova SV, Tsybulya SV (2004) Simulation of X-Ray powder diffraction patterns for one-dimensionally disordered crystals. Mater Sci Forum 443–444:87–90. doi:10.4028/www.scientific.net/MSF.443-444.87

    Article  Google Scholar 

  21. Ismagilov ZR, Shkrabina RA, Koryabkina NA (1999) New technology for production of spherical alumina supports for fluidized bed combustion. Catal Today 47:51–71. doi:10.1016/S0920-5861(98)00283-1

    Article  Google Scholar 

  22. Seeber BSM, Gonzenbach UT, Gauckler LJ (2013) Mechanical properties of highly porous alumina foams. J Mater Res 28:2281–2287. doi:10.1557/jmr.2013.102

    Article  Google Scholar 

  23. Chernousov YD, Ivannikov VI, Shebolaev IV, Shebolaev IV, Bolotov VA, Tanashev YY et al (2009) Characteristics of a chemical reactor that is a loaded microwave resonator. J Commun Technol Electron 54:231–233. doi:10.1134/S106422690902017X

    Article  Google Scholar 

  24. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f

    Article  Google Scholar 

  25. Andreev AS, d’Espinose de Lacaillerie J-B, Lapina OB, Gerashenko A (2015) Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR. Phys Chem Chem Phys 17:14598–14604. doi:10.1039/C4CP05327C

    Article  Google Scholar 

  26. Andreev AS, Lapina OB, d’Espinose de Lacaillerie J-B, Khassin AA (2013) Effect of alumina modification on the structure of cobalt-containing Fischer–Tropsch synthesis catalysts according to internal-field 59Co NMR data. J Struct Chem 54:102–110. doi:10.1134/S0022476613070093

    Article  Google Scholar 

  27. Andreev AS, Lapina OB, Cherepanova SV (2014) A new insight into cobalt metal powder internal field 59Co NMR spectra. Appl Magn Reson 45:1009–1017. doi:10.1007/s00723-014-0580-0

    Article  Google Scholar 

  28. Bakhmutov VI, Shpeizer BG, Prosvirin AV, Dunbar KR, Clearfield A (2009) Supermicroporous silica-based SiO2–Al2O3–NiO materials: solid-state NMR, NMR relaxation and magnetic susceptibility. Microporous Mesoporous Mater 118:78–86. doi:10.1016/j.micromeso.2008.08.023

    Article  Google Scholar 

  29. Golubkova G, Lomovsky O, Kwon Y, Vlasov A, Chuvilin A (2003) Formation of nanocrystalline structures in a Co–Al system by mechanical alloying and leaching. J Alloys Compd 351:101–105. doi:10.1016/S0925-8388(02)01083-6

    Article  Google Scholar 

  30. Maione A, Ruiz P (2006) Structured Pd/gamma-Al2O3 catalysts on FeCr alloy fibers for total combustion of methane. Stud Surf Sci Catal 162:681–688. doi:10.1016/S0167-2991(06)80968-7

    Article  Google Scholar 

  31. Kaplan WD, Avishai A (2006) Ceramic-matrix composites: microstructure, properties and applications. Woodhead, Cambridge

    Google Scholar 

  32. Sadykov V, Parmon V, Tikhov S (2009) Design of some oxide/metal composite supports and catalysts. Compos Interfaces 16:457–476. doi:10.1163/156855409X450954

    Article  Google Scholar 

  33. Usoltsev V, Tikhov S, Salanov A, Sadykov V, Golubkova G, Lomovskii O (2013) Properties of porous FeAlOy/FeAlx ceramic matrix composite influenced by mechanical activation of FeAl powder. Bull Mater Sci 36:1195–1200. doi:10.1007/s12034-013-0594-5

    Article  Google Scholar 

  34. Portnoi VK, Tret’yakov KV, Fadeeva VI (2004) Structural transformations during the mechanochemical synthesis and heating of Co–Al alloys. Inorg Mater 40:937–944. doi:10.1023/B:INMA.0000041325.46591.db

    Article  Google Scholar 

  35. Novakova E, Winterton N, Jarosch K, Brophy J (2005) High-productivity dehydrogenation of light alkanes in a microchannel reactor. Catal Commun 6:586–590. doi:10.1016/j.catcom.2005.05.009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported RFBR Grant #14-08-00251-a, Russian Academy of Sciences and Federal Agency of Scientific Organizations (Project V.45.3.8.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Tikhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhov, S.F., Andreev, A.S., Salanov, A.N. et al. Ceramic matrix composites prepared from CoAl powders. J Mater Sci 51, 10487–10498 (2016). https://doi.org/10.1007/s10853-016-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0268-y

Keywords

Navigation