Skip to main content
Log in

Influence of cross-linking density on the structure and properties of the interphase within supported ultrathin epoxy films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supported polymer film models based on epoxy resin networks with four different cross-linking densities and silica substrates have been established using molecular dynamics simulations. Van der Waals forces in the form of Lennard-Jones 9-6 are applied in calculating the interfacial interactions between the polymer and substrate. The existence of the interphase adjacent to the substrate surface was confirmed by carrying out density profile. Detailed analyses including mean square displacement and radial distribution functions of the structural properties of interphases for the four models were performed and compared. It was found that, with increasing the cross-linking density, the polymer sticks to the substrate more tightly, accompanied by stronger interactions arising from more hydrogen bonds formed between them. Furthermore, the mechanical properties of the interphase were found to be enhanced with the conversion by carrying out tensile deformation. This research regarding the interphase region within supported ultrathin epoxy films will be helpful in understanding the effect mechanism of nanofillers in the epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3):945–952. doi:10.1016/j.polymer.2008.11.054

    Article  Google Scholar 

  2. Cho J, Sun CT (2007) A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput Mater Sci 41(1):54–62. doi:10.1016/j.commatsci.2007.03.001

    Article  Google Scholar 

  3. Harton SE, Kumar SK, Yang H, Koga T, Hicks K, Lee H, Mijovic J, Liu M, Vallery RS, Gidley DW (2010) Immobilized polymer layers on spherical nanoparticles. Macromolecules 43(7):3415–3421. doi:10.1021/ma902484d

    Article  Google Scholar 

  4. Mortezaei M, Famili MHN, Kokabi M (2011) The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. Compos Sci Technol 71(8):1039–1045. doi:10.1016/j.compscitech.2011.02.012

    Article  Google Scholar 

  5. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12(10):750–753. doi:10.1002/(sici)1521-4095(200005)12:10<750:aid-adma750>3.0.co;2-6

    Article  Google Scholar 

  6. Qian D, Dickey EC (2001) In-situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation. J Microsc 204(1):39–45. doi:10.1046/j.1365-2818.2001.00940.x

    Article  Google Scholar 

  7. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube–polymer interfacial strength. Appl Phys Lett 82(23):4140–4142. doi:10.1063/1.1579568

    Article  Google Scholar 

  8. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4 (9):693–698. http://www.nature.com/nmat/journal/v4/n9/suppinfo/nmat1447_S1.html

  9. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278–282

    Article  Google Scholar 

  10. Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, White CC, W-l Wu (2001) Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34(16):5627–5634. doi:10.1021/ma001932q

    Article  Google Scholar 

  11. Mataz A, Gregory BM (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys: Condens Matter 17(15):R461

    Google Scholar 

  12. Hudzinskyy D, Lyulin AV, Baljon ARC, Balabaev NK, Michels MAJ (2011) Effects of strong confinement on the glass-transition temperature in simulated atactic polystyrene films. Macromolecules 44(7):2299–2310. doi:10.1021/ma102567s

    Article  Google Scholar 

  13. Keddie JL, Jones RAL, Cory RA (1994) Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss 98:219–230. doi:10.1039/fd9949800219

    Article  Google Scholar 

  14. Batistakis C, Lyulin AV, Michels MAJ (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45(17):7282–7292. doi:10.1021/ma300753e

    Article  Google Scholar 

  15. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2(10):695–700

    Article  Google Scholar 

  16. Bliznyuk VN, Assender HE, Briggs GAD (2002) Surface glass transition temperature of amorphous polymers. A new insight with SFM. Macromolecules 35(17):6613–6622. doi:10.1021/ma011326a

    Article  Google Scholar 

  17. Hadden CM, Jensen BD, Bandyopadhyay A, Odegard GM, Koo A, Liang R (2013) Molecular modeling of EPON-862/graphite composites: interfacial characteristics for multiple crosslink densities. Compos Sci Technol 76:92–99. doi:10.1016/j.compscitech.2013.01.002

    Article  Google Scholar 

  18. Li M, Gu Y-Z, Liu H, Li Y-X, Wang S-K, Wu Q, Zhang Z-G (2013) Investigation the interphase formation process of carbon fiber/epoxy composites using a multiscale simulation method. Compos Sci Technol 86:117–121. doi:10.1016/j.compscitech.2013.07.008

    Article  Google Scholar 

  19. Kim B, Choi J, Yang S, Yu S, Cho M (2015) Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites. Polymer 60:186–197. doi:10.1016/j.polymer.2015.01.043

    Article  Google Scholar 

  20. Clancy TC, Frankland SJV, Hinkley JA, Gates TS (2009) Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress. Polymer 50(12):2736–2742. doi:10.1016/j.polymer.2009.04.021

    Article  Google Scholar 

  21. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM (2012) Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45(12):5307–5315. doi:10.1021/ma3007587

    Article  Google Scholar 

  22. Theodorou DN, Suter UW (1985) Detailed molecular structure of a vinyl polymer glass. Macromolecules 18(7):1467–1478. doi:10.1021/ma00149a018

    Article  Google Scholar 

  23. Ratna D, Varley R, Raman RKS, Simon GP (2003) Studies on blends of epoxy-functionalized hyperbranched polymer and epoxy resin. J Mater Sci 38(1):147–154. doi:10.1023/a:1021182320285

    Article  Google Scholar 

  24. Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43(16):4365–4373. doi:10.1016/S0032-3861(02)00269-0

    Article  Google Scholar 

  25. Sun H (1995) Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28(3):701–712. doi:10.1021/ma00107a006

    Article  Google Scholar 

  26. Materials Studio, Accelrys Inc., San Diego, CA

  27. Yarovsky I, Evans E (2002) Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3):963–969. doi:10.1016/S0032-3861(01)00634-6

    Article  Google Scholar 

  28. Wu C, Xu W (2006) Atomistic molecular modelling of crosslinked epoxy resin. Polymer 47(16):6004–6009. doi:10.1016/j.polymer.2006.06.025

    Article  Google Scholar 

  29. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41(18):6837–6842. doi:10.1021/ma801153e

    Article  Google Scholar 

  30. L-h Tam, Lau D (2014) A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv 4(62):33074–33081. doi:10.1039/c4ra04298k

    Article  Google Scholar 

  31. L-h Tam, Lau D (2015) Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: an atomistic and experimental investigation. Polymer 57:132–142. doi:10.1016/j.polymer.2014.12.026

    Article  Google Scholar 

  32. Li K, Huo N, Liu X, Cheng J, Zhang J (2016) Effects of the furan ring in epoxy resin on the thermomechanical properties of highly cross-linked epoxy networks: a molecular simulation study. RSC Adv 6(1):769–777. doi:10.1039/c5ra22955c

    Article  Google Scholar 

  33. Girard-Reydet E, Riccardi CC, Sautereau H, Pascault JP (1995) Epoxy-aromatic diamine kinetics. Part 1. Modeling and influence of the diamine structure. Macromolecules 28(23):7599–7607. doi:10.1021/ma00127a003

    Article  Google Scholar 

  34. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. doi:10.1006/jcph.1995.1039

    Article  Google Scholar 

  35. Rahman R, Haque A (2013) Molecular modeling of cross-linked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos B Eng 54:353–364. doi:10.1016/j.compositesb.2013.05.034

    Article  Google Scholar 

  36. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2013) Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations. Polymer 54(13):3282–3289. doi:10.1016/j.polymer.2013.04.035

    Article  Google Scholar 

  37. Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15(7):752–768. doi:10.1002/jcc.540150708

    Article  Google Scholar 

  38. Todorova N, Legge FS, Treutlein H, Yarovsky I (2008) Systematic comparison of empirical forcefields for molecular dynamic simulation of insulin. J Phys Chem B 112(35):11137–11146. doi:10.1021/jp076825d

    Article  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graphics 14:33–38

    Article  Google Scholar 

  40. Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor-grown carbon nanofiber and their implications for composite interphase formation. Carbon 49(10):3219–3232. doi:10.1016/j.carbon.2011.03.047

    Article  Google Scholar 

  41. Clancy TC, Gates TS (2006) Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47(16):5990–5996. doi:10.1016/j.polymer.2006.05.062

    Article  Google Scholar 

  42. Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562. doi:10.1016/j.polymer.2004.11.022

    Article  Google Scholar 

  43. Schroeder JA, Madsen PA, Foister RT (1987) Structure/property relationships for a series of crosslinked aromatic/aliphatic epoxy mixtures. Polymer 28(6):929–940. doi:10.1016/0032-3861(87)90165-0

    Article  Google Scholar 

  44. Morgan RJ, Kong F-M, Walkup CM (1984) Structure-property relations of polyethertriamine-cured bisphenol-A-diglycidyl ether epoxies. Polymer 25(3):375–386. doi:10.1016/0032-3861(84)90291-X

    Article  Google Scholar 

  45. Wang M-J (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71(3):520–589. doi:10.5254/1.3538492

    Article  Google Scholar 

  46. Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM (2011) Rubber-filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 44(12):4887–4900. doi:10.1021/ma2007255

    Article  Google Scholar 

  47. Xin D, Han Q (2015) Adhesion reliability of the epoxy–Cu interface by molecular simulations. The Journal of Adhesion 91(5):409–418. doi:10.1080/00218464.2014.915216

    Article  Google Scholar 

  48. Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31(3–4):225–236. doi:10.1016/j.commatsci.2004.03.002

    Article  Google Scholar 

  49. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238(5):777–793. doi:10.1006/jmbi.1994.1334

    Article  Google Scholar 

  50. Yang S, Gao F, Qu J (2013) A molecular dynamics study of tensile strength between a highly-crosslinked epoxy molding compound and a copper substrate. Polymer 54(18):5064–5074. doi:10.1016/j.polymer.2013.07.019

    Article  Google Scholar 

  51. Thompson AP, Plimpton SJ, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 131(15):154107. doi:10.1063/1.3245303

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant No. 21476013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jue Cheng or Junying Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, Y., Lian, Q. et al. Influence of cross-linking density on the structure and properties of the interphase within supported ultrathin epoxy films. J Mater Sci 51, 9019–9030 (2016). https://doi.org/10.1007/s10853-016-0155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0155-6

Keywords

Navigation