Skip to main content
Log in

Effects of Zn-doping on structure and electrical properties of p-type conductive CuCr1−x Zn x O2 delafossite oxide

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Delafossite-type CuCr1−x Zn x O2 (x = 0, 0.03, 0.05, 0.07, 0.1) conductive oxides were synthesized by sol–gel method, and the effects of Zn-doping on morphology, structure, and electrical properties of the CuCr1−x Zn x O2 oxides were investigated. Based on X-ray diffraction (XRD) and Raman spectrum, the crystalline quality of the oxides is improved by the suitable substitution of Cr by Zn. The X-ray photoelectron spectroscopy (XPS) spectra reveal the chemical state of Zn is +2. The Hall and Seebeck coefficients of the pellet samples display a positive sign, indicating p-type conductive characteristics of the obtained oxides. The temperature-dependent resistivity of the oxides is proven to be consistent with small polaron hopping. For the three oxide samples with x = 0, 0.05, and 0.1, the activation energies for the polaron hopping between Zn2+ and Cr3+ sites are 54, 41.5, 32 meV, respectively, which is found to decrease with the increase of Zn content. The electrical conductivity can be remarkably improved by Zn-doping due to the small polaron hopping activation energy. These properties render this material promising as transparent electrode in optoelectronic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ginley D, Roy B, Ode A, Warmsingh C, Yoshida Y, Parilla P, Teplin C, Kaydanova T, Miedaner A, Curtis C (2003) Non-vacuum and PLD growth of next generation TCO materials. Thin Solid Films 445:193–198

    Article  Google Scholar 

  2. Harvey SP, Mason TO, Gassenbauer Y, Schafranek R, Klein A (2006) Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D: Appl Phys 39:3959

    Article  Google Scholar 

  3. Popovich ND, Wong SS, Ufer S, Sakhrani V, Paine D (2003) Electron-transfer kinetics at ITO films: influence of oxygen plasma. J Electrochem Soc 150:H255–H259

    Article  Google Scholar 

  4. Nomura K, Shibata N, Maeda M (2002) Preparation of zinc oxide thin films by pulsed current electrolysis. J Electrochem Soc 149:F76–F80

    Article  Google Scholar 

  5. Park DH, Cho YH, Do YR, Ahn BT (2006) Characterization of Eu-doped SnO2 thin films deposited by radio-frequency sputtering for a transparent conductive phosphor layer sensors and displays: principles, materials, and processing. J Electrochem Soc 153:H63–H67

    Article  Google Scholar 

  6. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942

    Article  Google Scholar 

  7. Dong G, Zhang M, Lan W (2008) Structural and physical properties of Mg-doped CuAlO2 thin films. Vacuum 82:1321–1324

    Article  Google Scholar 

  8. Dong G, Zhang M, Zhaeo X, Hui Yana, Chunyu Tianb, Yonggang Renb (2010) Improving the electrical conductivity of CuCrO2 thin film by N doping. Appl Surf Sci 256:4121–4124

    Article  Google Scholar 

  9. Nakanishi A, Katayama-Yoshida H (2012) Computational materials design for superconductivity in hole-doped delafossite CuAlO2: transparent superconductors. Solid State Commun 152:24–27

    Article  Google Scholar 

  10. Dong G, Zhang M, Wang M, Tang F, Li H, Huang A, Yan H (2012) Synthesis, electrical and optical properties of CuNdO2 compound. J Phys Chem Solids 73:1170–1172

    Article  Google Scholar 

  11. Chuai YH, Hu B, Li YD, Shen HZ, Zheng CT, Wang YD (2015) Effect of Sn substitution on the structure, morphology and photoelectricity properties of high c-axis oriented CuFe1-x Sn x O2 thin film. J Alloy Compd 627:299–306

    Article  Google Scholar 

  12. Han MJ, Jiang K, Zhang JZ, Li YW, Hu ZG, Chu JH (2011) Temperature dependent phonon evolutions and optical properties of highly c-axis oriented CuGaO2 semiconductor films grown by the sol-gel method. Appl Phys Lett 99:131104

    Article  Google Scholar 

  13. Jlaiel F, Elkhouni T, Amami M, Strobel P, Ben Salah A (2013) Structural and physical properties of the (Ca, Mg)-doped delafossite powder CuGaO2. Mater Res Bull 48:1020–1026

    Article  Google Scholar 

  14. Han MJ, Duan ZH, Zhang JZ, Zhang S, Li YW, Hu ZG (2013) Electronic transition and electrical transport properties of delafossite CuCr1-x Mg x O2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: a composition dependence study. J Appl Phys 114:163526

    Article  Google Scholar 

  15. Duan N, Sleight AW, Jayaraj MK, Tate J (2000) Transparent p-type conducting CuScO 2+x films. Appl Phys Lett 77:1325

    Article  Google Scholar 

  16. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  17. Jiang HF, Zhu XB, Lei HC, Li G, Yang ZR, Song WH, Dai JM, Sun YP, Fu YK (2011) Effects of Mg substitution on the structural, optical, and electrical properties of CuAlO2 thin films. J Alloy Compd 509:1768–1773

    Article  Google Scholar 

  18. Dong P, Zhang M, Dong GB, Zhao XP, Yan H (2008) The optical and electrical properties of Zn-doped CuAlO2 thin films deposited by RF magnetron sputtering semiconductor devices, materials, and processing. J Electrochem Soc 155:H319–H322

    Article  Google Scholar 

  19. Kakehi Y, Satoh K, Yoshimura T, Ashida A, Fujimura N (2010) Effects of Mg doping on structural, optical, and electrical properties of CuScO2(0001) epitaxial films. Vaccum 84:618–621

    Article  Google Scholar 

  20. Jayalakshmi V, Murugan R, Palanivel B (2005) Electronic and structural properties of CuMO2 (M = Al, Ga, In). J Alloys Compd 388:19–22

    Article  Google Scholar 

  21. Pellicer-Porres J, Segura A, Martinez E (2005) Erratum: vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys Rev B 72:064301–064306

    Article  Google Scholar 

  22. Jlaiel F, Amami M, Boudjada N, Strobel P, Ben Salah A (2011) Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J Alloys Compd 509:7784–7788

    Article  Google Scholar 

  23. Chen HY, Chang KP, Yang CC (2013) Characterization of transparent conductive delafossite-CuCr1−x O2 films. Appl Surf Sci 273:324–329

    Article  Google Scholar 

  24. Banerrjee AN, Kundoo S, Chattoopadhyay KK (2003) Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering. Thin Solid Films 440:5–10

    Article  Google Scholar 

  25. Banerjee AN, Maity R, Chattopadhyay KK (2004) Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering. Mater Lett 58:10–13

    Article  Google Scholar 

  26. Ko D, Urban JJ, Murray CB (2010) Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. J Nano Lett 10:1842–1847

    Article  Google Scholar 

  27. Lalanne M, Barnabe A, Mathieu F, Tailhades Ph (2009) Synthesis and thermostructural studies of a CuFe1−x Cr x O2 delafossite Solid Solution with 0 ≤ x ≤ 1. Inorg Chem 48:6065–6071

    Article  Google Scholar 

  28. Nozaki T, Hayashi T, Kajitani T (2007) Structural, magnetic and thermoelectric properties of delafossite-type oxide, CuCr1-x Mg x O2 (0 ≤ x ≤ 0.05). J Chem Eng Jpn 40:1205–1209

    Article  Google Scholar 

  29. Benko FA, Koffyberg FP (1987) Opto-electronic properties of p- and n-type delafossite, CuFeO2. J Phys Chem Solids 48:431–434

    Article  Google Scholar 

  30. Rogers DB, Shannon RD, Prewitt CT, Gillson JL (1971) Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure. J Inorg Chem 10:723–727

    Article  Google Scholar 

  31. Shawn Chatman, Pearce Carolyn I, Rosso Kevin M (2015) Charge transport at Ti-doped hematite (001)/aqueous interfaces. Chem Mater 27:1665–1673

    Article  Google Scholar 

  32. Farrell L, Fleischer K, Caffrey D, Mullarkey D, Norton E, Shvets IV (2015) Conducting mechanism in the epitaxial p -type transparent conducting oxide Cr2O3:Mg. Phys Rev B 91:125202

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 11404129, 61307124), National Key Technology R&D Program (Nos. 2013BAK06B04, 2014BAD08B03), Science and Technology Department of Jilin Province (No. 20140307014SF), Changchun Municipal Science and Technology Bureau (Nos. 11GH01, 14KG022) and the State Key Laboratory of Integrated Optoelectronics, Jilin University (No. IOSKL2012ZZ12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Tao Zheng or Yi-Ding Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuai, YH., Wang, X., Shen, HZ. et al. Effects of Zn-doping on structure and electrical properties of p-type conductive CuCr1−x Zn x O2 delafossite oxide. J Mater Sci 51, 3592–3599 (2016). https://doi.org/10.1007/s10853-015-9679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9679-4

Keywords

Navigation