Skip to main content
Log in

A comparative study of image analysis and porometry techniques for characterization of porous membranes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For porous membranes, characterization of a membrane’s key structural parameters, such as average and maximum pore size, pore size distribution, pore density, pore geometry, and surface roughness, is vital. The interplay between these parameters and membrane performance is detrimental for designing, evaluating, and developing the next generation of porous membranes. In this study, image analysis of scanning electron microscopy (SEM) micrographs is assessed as a technique to quantify such structural parameters. The focus of this work is on two open source software packages: ImageJ and Gwyddion. Comprehensive image analyses were carried out on three types of porous membranes: (i) phase inverted polyvinylidene fluoride, (ii) track-etched polycarbonate, and (iii) stretched polytetrafluoroethylene membranes. The information on key structural parameters acquired by image analysis was compared with data obtained from other established characterization methods. Based on current data, it was concluded that most membrane properties obtained by image analysis of micrographs were within acceptable accuracy, and consistent with other techniques except for surface roughness and pore size distribution. It was observed that optimum SEM micrograph’s magnification was essential to carry out an accurate image analysis. A major limitation of image analyses remains that they can only be carried out on surface pores. As such, they were found useful for characterizing membranes where surface pores define the overall pore size, geometry, and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

APS:

Average pore size

ASTM:

American Society for Testing and Materials

BP:

Bubble point pore size

CFP:

Capillary flow porometry

CWP:

Clean water permeance

DMAC:

Dimethylacetamide

MPS:

Mean pore size

MF:

Microfiltration

PC:

Polycarbonate

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

PSD:

Pore size distribution

RSD:

Relative standard deviation

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

UF:

Ultrafiltration

References

  1. Tung K-L, Chang K-S, Wu T-T, Lin N-J, Lee K-R, Lai J-Y (2014) Recent advances in the characterization of membrane morphology. Curr Opin Chem Eng 4:121–127

    Article  Google Scholar 

  2. Huisman IH, Dutré B, Persson KM, Trägårdh G (1997) Water permeability in ultrafiltration and microfiltration: viscous and electroviscous effects. Desalination 113(1):95–103

    Article  Google Scholar 

  3. Phattaranawik J, Jiraratananon R, Fane A (2003) Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J Membr Sci 215(1):75–85

    Article  Google Scholar 

  4. Saljoughi E, Sadrzadeh M, Mohammadi T (2009) Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J Membr Sci 326(2):627–634

    Article  Google Scholar 

  5. Tarleton ES, Wakeman RJ (1993) Understanding flux decline in crossflow microfiltration. Part 1 - Effects of particle and pore size. Chem Eng Res Des 71(4):399–410

  6. Wu B, Li K, Teo W (2007) Preparation and characterization of poly (vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation. J Appl Polym Sci 106(3):1482–1495

    Article  Google Scholar 

  7. Roy A, De S (2014) Extraction of steviol glycosides using novel cellulose acetate phthalate (CAP)–Polyacrylonitrile blend membranes. J Food Eng 126:7–16

    Article  Google Scholar 

  8. Singh S, Khulbe K, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142(1):111–127

    Article  Google Scholar 

  9. Al-Amoudi AS (2010) Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 259(1):1–10

    Article  Google Scholar 

  10. Maruf SH, Greenberg AR, Pellegrino J, Ding Y (2014) Fabrication and characterization of a surface-patterned thin film composite membrane. J Membr Sci 452:11–19

    Article  Google Scholar 

  11. Shih W-Y, Rahardianto A, Lee R-W, Cohen Y (2005) Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes. J Membr Sci 252(1):253–263

    Article  Google Scholar 

  12. Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188(1):115–128

    Article  Google Scholar 

  13. Jena A, Gupta K (2003) Liquid extrusion techniques for pore structure evaluation of nonwovens. Int Nonwovens J 12(3):45–53

    Google Scholar 

  14. Harimkar SP, Dahotre NB (2008) Characterization of microstructure in laser surface modified alumina ceramic. Mater Charact 59(6):700–707

    Article  Google Scholar 

  15. Mertens G, Elsen J (2006) Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars. Cem Concr Res 36(8):1453–1459

    Article  Google Scholar 

  16. Zeman L, Denault L (1992) Characterization of microfiltration membranes by image analysis of electron micrographs.: Part I. Method development. J Membr Sci 71(3):221–231

    Article  Google Scholar 

  17. Zeman L (1992) Characterization of microfiltration membranes by image analysis of electron micrographs.: Part II. Functional and morphological parameters. J Membr Sci 71(3):233–246

    Article  Google Scholar 

  18. Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) Membrane characterization by microscopic methods: multiscale structure. J Membr Sci 315(1–2):82–92

    Article  Google Scholar 

  19. Ziel R, Haus A, Tulke A (2008) Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J Membr Sci 323(2):241–246

    Article  Google Scholar 

  20. Charcosset C, Cherfi A, Bernengo J-C (2000) Characterization of microporous membrane morphology using confocal scanning laser microscopy. Chem Eng Sci 55(22):5351–5358

    Article  Google Scholar 

  21. Seminario L, Rozas R, Bórquez R, Toledo PG (2002) Pore blocking and permeability reduction in cross-flow microfiltration. J Membr Sci 209(1):121–142

    Article  Google Scholar 

  22. Ferrando M, Rŏżek A, Zator M, López F, Güell C (2005) An approach to membrane fouling characterization by confocal scanning laser microscopy. J Membr Sci 250(1–2):283–293

    Article  Google Scholar 

  23. Choong LT, Yi P, Rutledge GC (2015) Three-dimensional imaging of electrospun fiber mats using confocal laser scanning microscopy and digital image analysis. J Mater Sci 50(8):3014–3030

    Google Scholar 

  24. Sun W, Chen T, Chen C, Li J (2007) A study on membrane morphology by digital image processing. J Membr Sci 305(1–2):93–102

    Article  Google Scholar 

  25. Calvo J, Hernandez A, Pradanos P, Martınez L, Bowen W (1995) Pore size distributions in microporous membranes II. Bulk characterization of track-etched filters by air porometry and mercury porosimetry. J Colloid Interface Sci 176(2):467–478

    Article  Google Scholar 

  26. Martinez-Villa F, Arribas J, Tejerina F (1988) Quantitative microscopic study of surface characteristics of track-etched membranes. J Membr Sci 36:19–30

    Article  Google Scholar 

  27. Abdullah SZ, Bérubé PR, Horne DJ (2014) SEM imaging of membranes: importance of sample preparation and imaging parameters. J Membr Sci 463:113–125

    Article  Google Scholar 

  28. Andrzej C, Cezary W, Dorota L, Ewa L, Joanna N, Barbara K-S, Marcin G (2012) Studies on the structure of semi-permeable membranes by means of SEM problems and potential sources of errors. Biocybern Biomed Eng 32(1):51–64

    Article  Google Scholar 

  29. Andrzej C, Malgorzata P, Diana W, Juliusz K, Cezary W (2012) Membranes’ porosity evaluation by computer-aided analysis of SEM images—a preliminary study. Biocybern Biomed Eng 32(4):65–75

    Article  Google Scholar 

  30. Khayet M, Matsuura T (2011) Membrane distillation: principles and applications. Elsevier, New York

    Google Scholar 

  31. ASTM F316-03 (2011) Test methods for pore size characteristics of membrane filters by bubble point and mean flow pore test. ASTM International, West Conshohocken

    Google Scholar 

  32. ASTM E1382-97 (2004) Test methods for determining average grain size using semiautomatic and automatic image analysis. ASTM International, West Conshohocken

    Google Scholar 

  33. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  Google Scholar 

  34. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Central Eur J Phys 10(1):181–188

    Google Scholar 

  35. Bilad MR, Westbroek P, Vankelecom IFJ (2011) Assessment and optimization of electrospun nanofiber-membranes in a membrane bioreactor (MBR). J Membr Sci 380(1–2):181–191

    Article  Google Scholar 

  36. Chen Z, Rana D, Matsuura T, Yang Y, Lan CQ (2014) Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending. Sep Purif Technol 133:303–312

    Article  Google Scholar 

  37. van der Marel P, Zwijnenburg A, Kemperman A, Wessling M, Temmink H, van der Meer W (2010) Influence of membrane properties on fouling in submerged membrane bioreactors. J Membr Sci 348(1–2):66–74

    Article  Google Scholar 

  38. Wong PCY, Kwon Y-N, Criddle CS (2009) Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes. J Membr Sci 340(1):117–132

    Article  Google Scholar 

  39. Lalia BS, Guillen-Burrieza E, Arafat HA, Hashaikeh R (2013) Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J Membr Sci 428:104–115

    Article  Google Scholar 

  40. Saffarini RB, Mansoor B, Thomas R, Arafat HA (2013) Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. J Membr Sci 429:282–294

    Article  Google Scholar 

  41. Thomas R, Guillen-Burrieza E, Arafat HA (2014) Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). J Membr Sci 452:470–480

    Article  Google Scholar 

  42. Kharraz JA, Bilad M, Arafat HA (2015) Simple and effective corrugation of PVDF membranes for enhanced MBR performance. J Membr Sci 475:91–100

    Article  Google Scholar 

  43. Wu Q, Wu B (1995) Study of membrane morphology by image analysis of electron micrographs. J Membr Sci 105(1–2):113–120

    Article  Google Scholar 

  44. Chakrabarty B, Ghoshal AK, Purkait MK (2008) SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Colloid Interface Sci 320(1):245–253

    Article  Google Scholar 

  45. Gan Q (1999) Evaluation of solids reduction and backflush technique in crossflow microfiltration of a primary sewage effluent. Resour Conserv Recycl 27(1):9–14

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded under the Cooperative Agreement between the Masdar Institute of Science and Technology, Abu Dhabi, UAE and the Massachusetts Institute of Technology, Cambridge, MA, USA, Reference Number 02/MI/MIT/CP/11/07633/GEN/G/00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Arafat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMarzooqi, F.A., Bilad, M.R., Mansoor, B. et al. A comparative study of image analysis and porometry techniques for characterization of porous membranes. J Mater Sci 51, 2017–2032 (2016). https://doi.org/10.1007/s10853-015-9512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9512-0

Keywords

Navigation