Skip to main content
Log in

Copper pastes using bimodal particles for flexible printed electronics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper paste is poised to replace silver paste in some applications because of its low cost. However, a high temperature (>900 °C) is required for sintering a film printed with a copper micro-flakes paste, while film cracking might occur if the paste is made up of copper nanoparticles. In this study, these problems are ameliorated by using a mixture of copper micro-flakes and nanoparticles in the paste. The film printed with the paste containing bimodal particles could be sintered at a much lower temperature, and the presence of flakes could suppress the formation of cracks during sintering. The optimal formulation of the screen-print paste was determined to be 20 wt% copper flakes and 80 wt% copper nanoparticles in this study, leading to a volume resistivity of 28 µΩ cm for a film sintered with intense-pulsed light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10(17):3515–3535. doi:10.1002/smll.201303000

    Article  Google Scholar 

  2. Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57(3):571–580. doi:10.1109/TED.2009.2039541

    Article  Google Scholar 

  3. Willmann J, Stocker D, Dörsam E (2014) Characteristics and evaluation criteria of substrate-based manufacturing. Is roll-to-roll the best solution for printed electronics? Org Electron 15(7):1631–1640. doi:10.1016/j.orgel.2014.04.022

    Article  Google Scholar 

  4. Yim MJ, Li Y, Moon KS, Wong C (2007) Oxidation prevention and electrical property enhancement of copper-filled isotropically conductive adhesives. J Electron Mater 36(10):1341–1347

    Article  Google Scholar 

  5. Scherer J, Vogt M, Magnussen O, Behm R (1997) Corrosion of alkanethiol-covered Cu (100) surfaces in hydrochloric acid solution studied by in situ scanning tunneling microscopy. Langmuir 13(26):7045–7051

    Article  Google Scholar 

  6. Sample DR, Brown PW, Dougherty JP (1996) Microstructural evolution of copper thick films observed by environmental scanning electron microscopy. J Am Ceram Soc 79(5):1303–1306

    Article  Google Scholar 

  7. Mark HF (2013) Encyclopedia of polymer science and technology. Wiley, New York, pp 268–271

    Google Scholar 

  8. Wu SP, Gao RY, Xu LH (2009) Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor. J Mater Process Technol 209(3):1129–1133. doi:10.1016/j.jmatprotec.2008.03.010

    Article  Google Scholar 

  9. Kim I, Kim Y, Woo K, Ryu EH, Yon KY, Cao G, Moon J (2013) Synthesis of oxidation-resistant core–shell copper nanoparticles. RSC Advances 3(35):15169–15177

    Article  Google Scholar 

  10. Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. TOAPJ 4:19–36. doi:10.2174/1874183501104010019

    Article  Google Scholar 

  11. Yabuki A, Arriffin N (2010) Elelctrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films 518:7033–7037

    Article  Google Scholar 

  12. Lee DJ, Park SH, Jang S, Kim HS, Oh JH, Song YW (2011) Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. J Micromech Microeng 21:125023. doi:10.1088/0960-1317/21/12/125023

  13. Park SH, Jang S, Lee DJ, Oh J, Kim HS (2013) Two-step flash light sintering process for crack-free inkjet-printed Ag films. J Micromech Microeng 23(1):015013. doi:10.1088/0960-1317/23/1/015013

  14. Park SH, Kim HS (2014) Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films 550:575–581. doi:10.1016/j.tsf.2013.11.075

    Article  Google Scholar 

  15. Ryu J, Kim HS, Hahn HT (2011) Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J Electron Mater 40(1):42–50. doi:10.1007/s11664-010-1384-0

    Article  Google Scholar 

  16. Park SH, Chung WH, Kim HS (2014) Temperature changes of copper nanoparticle ink during flash light sintering. J Mater Process Technol 214:2730–2738. doi:10.1016/j.jmatprotec.2014.06.007

    Article  Google Scholar 

  17. Kang JS, Kim HS, Ryu J, Hahn HT, Jang S, Joung JW (2010) Inkjet printed electronics using copper nanoparticle ink. J Mater Sci Mater Electron 21(11):1213–1220

    Article  Google Scholar 

  18. Chen D, Qiao X, Qiu X, Chen J (2009) Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44(4):1076–1081. doi:10.1007/s10853-008-3204-y

    Article  Google Scholar 

  19. Ramezani M, Neitzert T (2012) Mechanical milling of aluminium powder using planetary ball milling process. JAMME 55(2):790–798

    Google Scholar 

  20. Tam SK, Ng KM (2015) High concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate. J Nanopart Res (manuscript submitted)

  21. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–194. doi:10.1016/s0079-6425(99)00010-9

    Article  Google Scholar 

  22. Tsai CY, Chang WC, Chen GL, Chung CH, Liang JX, Ma WY, Yang TN (2015) A study of the preparation and properties of antioxidative copper inks with high electrical conductivity. Nanoscale Res Lett 10(1):1–7

    Article  Google Scholar 

  23. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater 18(5):679–686

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nano and Advanced Materials Institute Limited, Hong Kong, for their assistance to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Ming Ng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, S.K., Fung, K.Y. & Ng, K.M. Copper pastes using bimodal particles for flexible printed electronics. J Mater Sci 51, 1914–1922 (2016). https://doi.org/10.1007/s10853-015-9498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9498-7

Keywords

Navigation