Skip to main content
Log in

Aerosol filtration using electrospun cellulose acetate fibers

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aerosol filtration using electrospun cellulose acetate filters with different mean fiber diameters is reported, and the results are compared with those for two conventional filter media, a glass fiber filter and a cellulose acetate microfiber filter. The performance of these filters was studied using two aerosols, one solid (NaCl) and one liquid (diethyl hexyl sebacate), under conditions of relatively high face velocity (45 cm/s). The experimental observations are compared to theoretical predictions based on single fiber filtration efficiency. Our results indicate that the mechanisms for single fiber filtration efficiency provide reasonable predictions of the most penetrating particle size (MPPS), in the range of 40–270 nm, percentage penetration from 0.03 to 70 %, and fiber diameter in the range from 0.1 to 24 µm. Using an analysis based on blocking filtration laws, we conclude that filtration by cake formation dominated in the case of NaCl aerosols on electrospun filter media, whereas filters with larger fiber diameter showed a transition in mechanisms, from an initial regime characterized by pore blocking to a later regime characterized by cake formation. The liquid aerosol did not exhibit cake formation, even for the smallest fiber diameters, and also had much smaller influence on pressure drop than did the solid aerosol. The electrospun filters demonstrated slightly better quality factors compared to the commercial glass fiber filter, at a much lower thickness. In general, this study demonstrates control of the properties of electrospun cellulose acetate fibers for air filtration application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang J, Tronville P (2014) Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles. J Nanopart Res 16:2417

    Article  Google Scholar 

  2. Kim K, Lee C, Kim IW, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fibers Polym 10:60

    Article  Google Scholar 

  3. Li L, Zuo ZL, Japuntich DA, Pui DYH (2012) Evaluation of filter media for particle number, surface area and mass penetrations. Ann Occup Hyg 56:581

    Google Scholar 

  4. Swanson J, Watts W, Kittelson D, Newman R, Ziebarth R (2013) Filtration efficiency and pressure drop of miniature diesel particulate filters. Aerosol Sci Technol 47:452

    Article  Google Scholar 

  5. Hammond D, Fong GT, Cummings KM, O’Connor RJ, Giovino GA, McNeill A (2006) Cigarette yields and human exposure: a comparison of alternative testing regimens. Cancer Epidemiol Biomark Prev 15:1495

    Article  Google Scholar 

  6. Hubbard JA, Salazar KC, Crown KK, Servantes BL (2014) High-volume aerosol filtration and mitigation of inertial particle rebound. Aerosol Sci Technol 48:530

    Article  Google Scholar 

  7. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Hoboken

    Google Scholar 

  8. Brown RC (1993) Air filtration: an integrated approach to the theory and applications of fibrous filters. Pergamon Press, Oxford

    Google Scholar 

  9. Japuntich DA, Stenhouse JIT, Liu BYH (1994) Experimental results of solid monodisperse particle clogging of fibrous filters. J Aerosol Sci 25:385

    Article  Google Scholar 

  10. Huang SH, Chen CW, Kuo YM, Lai CY, McKay R, Chen CC (2013) Factors affecting filter penetration and quality factor of particulate respirators. Aerosol Air Qual Res 13:162

    Google Scholar 

  11. Leung WWF, Hung CH (2008) Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols. Sep Purif Technol 63:691

    Article  Google Scholar 

  12. Matulevicius J, Kliucininkas L, Martuzevicius D, Krugly E, Tichonovas M, Baltrusaitis J (2014) Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J Nanomater 859656:1

    Article  Google Scholar 

  13. Podgorski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804

    Article  Google Scholar 

  14. Wang J, Kim SC, Pui DY (2008) Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. J Aerosol Sci 39:323

    Article  Google Scholar 

  15. Kuo YY, Bruno FC, Wang W (2014) Filtration performance against nanoparticles by electrospun Nylon-6 media containing ultrathin nanofibers. Aerosol Sci Technol 48:13

    Article  Google Scholar 

  16. Kim GT, Ahn YC, Lee JK (2008) Characteristics of Nylon 6 nanofilter for removing ultra fine particles. Korean J Chem Eng 25:368

    Article  Google Scholar 

  17. Leung WWF, Hung CH, Yuen PT (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71:30

    Article  Google Scholar 

  18. Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Deliv Rev 59:1384

    Article  Google Scholar 

  19. Yun KM, Hogan CJ, Mastubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751

    Article  Google Scholar 

  20. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283. doi:10.1007/s10853-010-4509-1

    Article  Google Scholar 

  21. Yeom BY, Pourdeyhimi B (2011) Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets. J Mater Sci 46:5761. doi:10.1007/s10853-011-5531-7

    Article  Google Scholar 

  22. Pai CL, Boyce MC, Rutledge GC (2011) On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer 52:6126

    Article  Google Scholar 

  23. Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441:121

    Article  Google Scholar 

  24. Li J, Gao F, Liu LQ, Zhang Z (2013) Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett 7:683

    Article  Google Scholar 

  25. Choong LT, Khan Z, Rutledge GC (2014) Permeability of electrospun fiber mats under hydraulic flow. J Membr Sci 451:111

    Article  Google Scholar 

  26. Choong LT, Mannarino MM, Basu S, Rutledge GC (2013) Compressibility of electrospun fiber mats. J Mater Sci 48:7827. doi:10.1007/s10853-013-7528-x

    Article  Google Scholar 

  27. Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6:1030

    Article  Google Scholar 

  28. Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236. doi:10.1007/s10853-011-6081-8

    Article  Google Scholar 

  29. Alamein MA, Stephens S, Liu Q, Skabo S, Warnke PH (2013) Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Tissue Eng Part C Methods 19:458

    Article  Google Scholar 

  30. Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492

    Article  Google Scholar 

  31. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955

    Article  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    Article  Google Scholar 

  33. Herman, L. L. (2006). Cellulose acetate and triacetate fibers, in Handbook of Fiber Chemistry, Third edition. CRC press.

  34. Sinclair D, Lamer VK (1949) Light scattering as a measure of particle size in aerosols—the production of monodisperse aerosols. Chem Rev 44:245

    Article  Google Scholar 

  35. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531

    Article  Google Scholar 

  36. Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789

    Article  Google Scholar 

  37. Huang SH, Kuo YM, Chang KN, Chen YK, Lin WY, Lin WY, Chen CC (2010) Experimental study on the effect of fiber orientation on filter quality. Aerosol Sci Technol 44:964

    Article  Google Scholar 

  38. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A 187:469

    Article  Google Scholar 

  39. Kirsch AA, Stechkina IB, Fuchs NA (1974) Gas flow in aerosol filters made of polydisperse ultrafine fibres. J Aerosol Sci 5:39

    Article  Google Scholar 

  40. Charvet A, Gonthier Y, Gonze E, Bernis A (2010) Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium. Chem Eng Sci 65:1875

    Article  Google Scholar 

  41. Leung WWF, Hung CH (2012) Skin effect in nanofiber filtration of submicron aerosols. Sep Purif Technol 92:174

    Article  Google Scholar 

  42. Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep Purif Technol 75:340

    Article  Google Scholar 

  43. Stafford RG, Ettinger HJ (1971) Comparison of filter media against liquid and solid aerosols. Am Ind Hyg Assoc J 32:319

    Article  Google Scholar 

  44. Uecker JC, Tepper GC, Rosell-Llompart J (2010) Ion-assisted collection of Nylon-4,6 electrospun nanofibers. Polymer 51:5221

    Article  Google Scholar 

  45. Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100:259

    Article  Google Scholar 

  46. Hermia J (1982) Constant pressure blocking filtration laws—application to power-law non-Newtonian fluids. Trans Inst Chem Eng 60:183

    Google Scholar 

  47. Iritani E (2013) A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration. Dry Technol 31:146

    Article  Google Scholar 

  48. Choong LT, Lin YM, Rutledge GC (2015) Separation of oil-in-water emulsions using electrospun fiber membranes and modeling of the fouling mechanism. J Membr Sci 486:229

    Article  Google Scholar 

  49. Eichhorn SJ, Sampson WW (2005) Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2:309

    Article  Google Scholar 

  50. Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392:167

    Article  Google Scholar 

  51. Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials 31:491

    Article  Google Scholar 

  52. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7:2796

    Article  Google Scholar 

  53. Contal P, Simao J, Thomas D, Frising T, Calle S, Appert-Collin JC, Bemer D (2004) Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J Aerosol Sci 35:263

    Article  Google Scholar 

  54. Penicot P, Thomas D, Contal P, Leclerc D, Vendel J (1999) Clogging of HEPA fibrous filters by solid and liquid aerosol particles: an experimental study. Filtr Sep 36:59

    Article  Google Scholar 

  55. Chen CC, Chen WY, Huang SH, Lin WY, Kuo YM, Jeng FT (2001) Experimental study on the loading characteristics of needlefelt filters with micrometer-sized monodisperse aerosols. Aerosol Sci Technol 34:262

    Article  Google Scholar 

Download references

Acknowledgements

The funding for this project was provided by Philip Morris International (Neuchâtel, Switzerland). We also like to acknowledge the Institute for Soldier Nanotechnology at MIT for use of facilities and Dr. Matthew M. Mannarino for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Rutledge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, S., Hatton, T.A. & Rutledge, G.C. Aerosol filtration using electrospun cellulose acetate fibers. J Mater Sci 51, 204–217 (2016). https://doi.org/10.1007/s10853-015-9286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9286-4

Keywords

Navigation