Skip to main content
Log in

Torsional modulus and internal friction of polyacrylonitrile- and pitch-based carbon fibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, the torsional modulus and internal friction of different types of polyacrylonitrile (PAN)- and pitch-based carbon fibers were measured with the torsional pendulum method to evaluate the relationship between these properties and the microstructure of carbon fibers. For easier and more accurate measurement, an aluminum disk-type pendulum was used. The measured torsional moduli were comparable to the previously reported values, which indicates the validity of the proposed method. The experimental results and discussion based on Eshelby’s solution and Mori–Tanaka’s mean stress method revealed that the torsional modulus should have a significant relation to the volume fraction of the crystalline region in the fibers and amorphous modulus. The results imply that fibers with a smaller crystalline region and higher amorphous modulus should show a higher torsional modulus. The internal friction of the fibers increased with the torsional modulus. This suggests that the internal friction may also be related to the size of the crystalline region and that the amorphous region has greater internal friction than the crystalline region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fischer L, Ruland W (1980) The influence of graphitization on the mechanical properties of carbon fibers. Colloid Polym Sci 258:917–922

    Article  Google Scholar 

  2. Oberlin A (1984) Carbonization and graphitization. Carbon 22:521–541

    Article  Google Scholar 

  3. Johnson DJ (1987) Structure-property relationship in carbon fibres. J Phys D Appl Phys 20:286–291

    Article  Google Scholar 

  4. Northolt MG, Veldhuizen LH, Jansen H (1991) Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes. Carbon 29:1267–1279

    Article  Google Scholar 

  5. Huang Y, Young RJ (1995) Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon 33:97–107

    Article  Google Scholar 

  6. Paris O, Loidl D, Peterlik H (2002) Texture of PAN- and pitch-based carbon fibres. Carbon 40:551–555

    Article  Google Scholar 

  7. Li W, Long D, Miyawaki J, Qiao W, Ling L, Mochida I, Yoon S (2012) Structural features of polyacrylonitrile-based carbon fiber. J Mater Sci 47:919–928. doi:10.1007/s10853-011-5872-2

    Article  Google Scholar 

  8. Naito K, Yang J, Tanaka Y, Kagawa Y (2012) The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers. J Mater Sci 47:632–642. doi:10.1007/s10853-011-5832-x

    Article  Google Scholar 

  9. Dumanh AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250. doi:10.1007/s10853-011-6081-8

    Article  Google Scholar 

  10. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 46:189–195

    Article  Google Scholar 

  11. Loidl D, Paris O, Rennhofer H, Müller M, Peterlik H (2007) Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers. Carbon 45(14):2801–2805

    Article  Google Scholar 

  12. Chand S (2000) Review Carbon fibers for composites. J Mater Sci 35:1303–1313. doi:10.1023/A:1004780301489

    Article  Google Scholar 

  13. Melanitis N, Tetlow PL, Galiotis C, Smith SB (1994) Compression behavior of carbon fibres. J Mater Sci 29:786–799. doi:10.1007/BF00445995

    Article  Google Scholar 

  14. Oya N, Johnson DJ (2001) Longitudinal compressive behavior and microstructure of PAN-based carbon fibres. Carbon 39:635–645

    Article  Google Scholar 

  15. Todt M, Rammerstorfer FG, Paris O, Fischer FD (2010) Nanomechanical studies of the compressive behavior of carbon fibres. J Mater Sci 45:6845–6848. doi:10.1007/s10853-010-4941-2

    Article  Google Scholar 

  16. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2013) The effect of nanostructure upon the compressive strength of carbon fibers. J Mater Sci 48:2104–2110. doi:10.1007/s10853-012-6984-z

    Article  Google Scholar 

  17. Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) Flexural properties of PAN-and pitch-based carbon fibers. J Am Ceram Soc 92(1):186–192

    Article  Google Scholar 

  18. Loidl D, Paris O, Burghammer M, Riekel C, Peterlik H (2005) Direct observation of nanocrystallite buckling in carbon fibers under bending load. Phys Rev Lett 95(22):225501

    Article  Google Scholar 

  19. Tanaka F, Okabe T, Okuda H, Ise M, Kinloch IA, Mori T, Young RJ (2013) The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon 52:372–378

    Article  Google Scholar 

  20. Loidl D, Peterlik H, Müller M, Riekel C, Paris O (2003) Elastic moduli of nanocrystallites in carbon fibers measured by in situ X-ray microbeam diffraction. Carbon 41(3):563–570

    Article  Google Scholar 

  21. Maurin R, Davies P, Baral N, Baley C (2008) Transverse Properties of Carbon Fibres by Nano-indentation and Micro-mechanics. Appl Compos Mater 15:61–73

    Article  Google Scholar 

  22. Norton JT (1939) A torsion pendulum instrument for measuring internal friction. Rev Sci Instrum 10:77–81

    Article  Google Scholar 

  23. Ke TS (1947) Experimental evidence of the viscous behavior of grain boundaries in metals. Phys Rev 71:533–546

    Article  Google Scholar 

  24. Adams RD, Lloyd DH (1975) Apparatus for measuring the torsional modulus and damping of single carbon fibres. J Phy E: Sci Instrum 8:475–480

    Article  Google Scholar 

  25. Heijboer J (1979) The torsion pendulum in the investigation of polymers. Polym Eng Sci 19:664–675

    Article  Google Scholar 

  26. Deteresa SJ, Allen SR, Farris RJ, Porter RS (1984) Compressive and torsional behavior of Kevlar 49 fibre. J Mater Sci 19:57–72. doi:10.1007/BF02403111

    Article  Google Scholar 

  27. Villeneuve JF, Naslain R (1993) Shear moduli of carbon, Si-C-O, Si-C-Ti-O and alumina single ceramic fibers as assessed by torsion pendulum tests. Compos Sci Technol 49:191–203

    Article  Google Scholar 

  28. Hudspeth M, Nie X, Chen W (2012) Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension. Polymer 53:5568–5574

    Article  Google Scholar 

  29. Sawada Y (1991) Torsional and tensile properties of isotropic ceramic fibers. Trans Jpn Soc Mech Eng Ser A 57:530–535 (in Japanese)

    Article  Google Scholar 

  30. Sawada Y, Shindo A (1992) Torsional properties of carbon fibers. Carbon 30:619–629

    Article  Google Scholar 

  31. Mehta VR, Kumar S (1994) Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. J Mater Sci 29:3658–3664. doi:10.1007/BF00357332

    Article  Google Scholar 

  32. Fujita K, Kojima M, Iwashita N (2013) Monofilament test of carbon fiber (No. 2) –Torsional Test. In: Proceedings of 4th Japan conference on composite materials (JCCM-4) (in Japanese)

  33. Toray Co., Ltd., http://www.torayca.com/en/index.html. Accessed 14 July 2015

  34. Toho Tenax, Co., Ltd., http://www.tohotenax.com/tenax/en/. Accessed 14 July 2015

  35. Mitsibishi Plastics Inc., https://www.mpi.co.jp/english/products/industrial_materials/. Accessed 14 July 2015

  36. Nippon Graphite Fiber Co., Ltd., http://www.ngfworld.com/en/en_product/en_yarn.html. Accessed 14 July 2015

  37. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and relate problems. Proc R Soc London A 241(1226):379–396

    Article  Google Scholar 

  38. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc London A 252(1271):561–569

    Article  Google Scholar 

  39. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  40. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos Part A 57:88–94

    Article  Google Scholar 

  41. Blackslee OL, Proctor DG, Seldin EJ, Spence GB, Weng T (1970) Elastic constants of compression-annealed pyrolytic graphite. J Appl Phys 41(8):3373–3382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, M., Kogo, Y., Koyanagi, J. et al. Torsional modulus and internal friction of polyacrylonitrile- and pitch-based carbon fibers. J Mater Sci 50, 7018–7025 (2015). https://doi.org/10.1007/s10853-015-9254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9254-z

Keywords

Navigation