Skip to main content
Log in

Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Infrared thermography was used to study damage developing in woven fabrics. Two different experiments were performed, a ±45° tensile test and a rail shear test. These two different types of tests show different damage scenarios, even if the shear stress/strain curves are similar. The ±45° tension test shows matrix hardening and matrix cracking whereas the rail shear test shows only matrix hardening. The infrared thermography was used to perform an energy balance, which enabled the visualization of the portion of dissipated energy caused by matrix cracking. The results showed that when the resin is subjected to pure shear, a larger amount of energy is stored by the material, whereas when the resin is subjected to hydrostatic pressure, the main part of mechanical energy is dissipated as heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pandita SD et al (2001) Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions. Compos A 32(10):1533–1539

    Article  Google Scholar 

  2. John S et al (2001) Longitudinal and transverse damage taxonomy in woven composite components. Compos B 32(8):659–668

    Article  Google Scholar 

  3. Osada T et al (2003) Initial fracture behavior of satin woven fabric composites. Compos Struct 61(4):333–339

    Article  Google Scholar 

  4. Daggumati S et al (2010) Local damage in a 5-harness satin weave composite under static tension: part I—experimental analysis. Compos Sci Technol 70(13):1926–1933

    Article  Google Scholar 

  5. Vieille B et al (2014) Influence of matrix toughness and ductility on the compression after impact behavior of woven-ply thermoplastic and thermosetting composites: a comparative study. Compos Struct 110:207–218

    Article  Google Scholar 

  6. Soumahoro Z (2005) Etude du couplage thermomécanique dans la propagation dynamique de fissure. Université à Palaiseau, Ecole Polytechnique, Palaiseau

    Google Scholar 

  7. Lisle T et al (2013) Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography. Compos A 53:75–87

    Article  Google Scholar 

  8. Lisle T et al (2015) Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography. Compos Sci Technol 112:22–33

    Article  Google Scholar 

  9. Freund LB, Hutchinson JW (1985) High strain-rate crack-growth in rate-dependent plastic solids. J Mech Phys Solids 33(2):169–191

    Article  Google Scholar 

  10. Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. In: Royal society A: mathematical, physical and engineering sciences

  11. Rittel D (1999) On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mech Mater 31(2):131–139

    Article  Google Scholar 

  12. Li ZH, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38(20):3549–3562

    Article  Google Scholar 

  13. Benevolenski OI et al (2003) Mode I fracture resistance of glass fibre mat-reinforced polypropylene composites at various degree of consolidation. Compos A 34(3):267–273

    Article  Google Scholar 

  14. Rouault T et al (2013) Reversible rail shear apparatus applied to the study of woven laminate shear behavior. Exp Mech 53(8):1–12

    Article  Google Scholar 

  15. Bizeul M (2009) Contribution à l’étude de la propagation de coupure en fatigue dans les revêtements composites tissés minces. Université de Toulouse, Toulouse

    Google Scholar 

  16. Bizeul M et al (2011) Fatigue crack growth in thin notched woven glass composites under tensile loading. Part I: experimental. Compos Sci Technol 71(3):289–296

    Article  Google Scholar 

  17. Bizeul M et al (2011) Fatigue crack growth in thin notched woven glass composites under tensile loading. Part II: modelling. Compos Sci Technol 71(3):297–305

    Article  Google Scholar 

  18. Gao F et al (1999) Damage accumulation in woven-fabric CFRP laminates under tensile loading: part 1. Observations of damage accumulation. Compos Sci Technol 59(1):123–136

    Article  Google Scholar 

  19. Kergomard YD et al (2010) Intralaminar and interlaminar damage in quasi-unidirectional composite structures: experimental analysis. Compos Sci Technol 70(10):1504–1512

    Article  Google Scholar 

  20. Alif N, Carlsson LA (1997) Failure mechanisms of woven carbon and glass composites. ASTM Spec Tech Publ 1285:471–493

    Google Scholar 

  21. D3518/D3518M-13, 2001 Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate. ASTM International

  22. Lessard LB, Eilers OP, Shokrieh MM (1997) Modification of the three-rail shear test for composite materials under static and fatigue loading. ASTM Spec Tech Publ 1242:217–233

    Google Scholar 

  23. De Greef N, Gorbatikh L, Lomov SV, Verpoest I (2011) Damage development in woven carbon fibre/epoxy composites modified with carbon nanotubes under tension in the bias direction. Compos A 42(11):1635–1644

    Article  Google Scholar 

  24. Couégnat G (2008) Approche multiéchelle du comportement mécanique de matériaux composites à renfort tissé. Université Sciences et Technologies-Bordeaux I, Bordeaux

    Google Scholar 

  25. Karahan M (2011) Investigation of damage initiation and propagation in 2 × 2 twill woven carbon/epoxy multi-layer composites. Text Res J 81(4):412–428

    Article  Google Scholar 

  26. Lemaignan C (2003) La Rupture des matériaux. Les Ulis (Essonne), EDP sciences

    Google Scholar 

  27. Fiedler B et al (2001) Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol 61(11):1615–1624

    Article  Google Scholar 

  28. Emery TR et al (2008) A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis. Compos Sci Technol 68(3–4):743–752

    Article  Google Scholar 

  29. Trojanowski A, Ruiz C, Harding J (1997) Thermomechanical properties of polymers at high rates of strain. J Phys IV France 7(C3):447–452

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the “Ecole Nationale d’Ingénieur de Tarbes” for the loan of the infrared camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bouvet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisle, T., Bouvet, C., Pastor, M.L. et al. Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts. J Mater Sci 50, 6154–6170 (2015). https://doi.org/10.1007/s10853-015-9173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9173-z

Keywords

Navigation