Skip to main content

Advertisement

Log in

Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile method was developed to prepare MnO2/holey graphene oxide (MnO2/HGO) materials based on graphene oxide (GO) flakes for supercapacitor applications. FESEM images show that MnO2 nanorods were formed on the surface of HGO flakes, serving as spacers and preventing the HGO layers from stacking. This provides pathways between the layers for the electrolyte to access the bulk active materials. By introducing the high intrinsic capacitance MnO2 nanorods together with the modified 3-D structure, capacitance increases to 71.0 F/g compared with 30.0 F/g of GO. More pathways were created by nitric acid etching holes on the surface of the GO. This 3-D holey MnO2/HGO structure achieves a capacitance of 117.45 F/g, which is 1.65 times higher than that of MnO2/GO composite and 3.9 times higher than that of GO only. BET surface area, XRD, and AC impedance were also used to analyze the possible reasons for the enhanced electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Markoulidisa F, Leia C, Lekakoua C, Duffb D, Khalilb S, Martoranac B, Cannavaroc I (2014) A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes. Carbon 68:58–66

    Article  Google Scholar 

  2. Mateyshina Y, Ulihin A, Samarov A, Barnakov C, Uvarov N (2013) Nanoporous carbon-based electrode materials for supercapacitors. Solid State Ion 251:59–61

    Article  Google Scholar 

  3. Mezavilla S, Zanella C, Aravind PuR, Yolpe CD, Soraru GD (2012) Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties. J Mater Sci 47:7175–7180. doi:10.1007/s10853-012-6662-1

    Article  Google Scholar 

  4. Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep 3:2286. doi:10.1038/srep02286

    Google Scholar 

  5. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  Google Scholar 

  6. Yao W, Wang J, Li H, Lu Y (2014) Flexible α-MnO2 paper formed by millimeter-long nanowires for supercapacitor electrodes. J Power Sources 247:824–830. doi:10.1016/j.jpowsour.2013.09.039

    Article  Google Scholar 

  7. Hu J, Kang Z, Li F, Huang X (2014) Graphene with three-dimensional architecture for high performance supercapacitor. Carbon 67:221–229. doi:10.1016/j.carbon.2013.09.085

    Article  Google Scholar 

  8. Kim Y-S, Kumar K, Fisher FT, Yang E-H (2012) Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23:015301–015308. doi:10.1088/0957-4484/23/1/015301

    Article  Google Scholar 

  9. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53. doi:10.1039/c2ee23284g

    Article  Google Scholar 

  10. Conte M (2010) Supercapacitors technical requirements for new applications. Fuel Cells 10(5):806–818

    Article  Google Scholar 

  11. Sopcic S, Rokovic MK, Mandic Z, Róka A, Inzelt G (2011) Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim Acta 56:3543–3548. doi:10.1016/j.electacta.2010.10.035

    Article  Google Scholar 

  12. Li Z-S, Wang H-Q, Huang Y-G, Li Q-Y, Wang X-Y (2010) Manganese dioxide-coated activated mesocarbon microbeads for supercapacitors in organic electrolyte. Colloids Surf A 366:104–109. doi:10.1016/j.colsurfa.2010.05.031

    Article  Google Scholar 

  13. Su L, Gong L, Lü H, Xü Q (2014) Enhanced low-temperature capacitance of MnO2 nanorods in a redox-active electrolyte. J Power Sources 248:212. doi:10.1016/j.jpowsour.2013.09.047

    Article  Google Scholar 

  14. Yang J, Lan T, Liu J, Song Y, Wei M (2013) Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution. Electrochim Acta 105:489–495. doi:10.1016/j.electacta.2013.05.023

    Article  Google Scholar 

  15. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir 21:5907–5913

    Article  Google Scholar 

  16. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem 647:60–65

    Article  Google Scholar 

  17. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. doi:10.1021/nn304833s

    Article  Google Scholar 

  18. Liu Y, He D, Wu H, Duan J, Zhang Y (2015) Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors. Electrochim Acta 164:154–162

    Article  Google Scholar 

  19. Huang Y, Zhu M, Meng W, Fu Y, Wang Z, Huang Y, Pei Z, Zhi C (2015) Robust reduced graphene-oxide paper fabricated by household non-stick frying pan: large-area freestanding flexible substrate for supercapacitor. RSC Adv 5:33981–33989. doi:10.1039/c5ra02868j

    Article  Google Scholar 

  20. Wang L, Deng D, Ng KYS (2013) Facile one-step synthesis of MnO2 nanowires on graphene under mild conditions for application in supercapacitors. J Mater Sci 48(18):6410–6417. doi:10.1007/s10853-013-7441-3

    Article  Google Scholar 

  21. Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11):8739–8749

    Article  Google Scholar 

  22. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027

    Article  Google Scholar 

  23. Balakrishnan A, Subramanian KRV (2014) Nanostructured ceramic oxides for supercapacitor applications. CRC Press, New York

    Book  Google Scholar 

  24. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  Google Scholar 

  25. Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408–1416

    Google Scholar 

  26. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans 40:6388–6391

    Article  Google Scholar 

  27. Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028. doi:10.1021/nn3003345

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from the Department of Energy (Grant DEFG36-05GO85005) for this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Simon Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Deng, D., Salley, S.O. et al. Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J Mater Sci 50, 6313–6320 (2015). https://doi.org/10.1007/s10853-015-9169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9169-8

Keywords

Navigation