Skip to main content
Log in

Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals

  • Multiscale Modeling and Experiment
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT–metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force–displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Regarding the displacement: force–displacement relations from simulation and experiment should not be confused, see axis definitions.

References

  1. Abraham FF (1986) Computational statistical mechanics methodology, applications and supercomputing. Adv Phys 35:1–111

    Article  Google Scholar 

  2. Akita S, Nakayama Y (2003) Extraction of inner shell from multiwall carbon nanotubes for scanning probe microscope tip. Jpn J Appl Phys 42:3933–3936

    Article  Google Scholar 

  3. Awad I, Ladani L (2014) Interfacial strength between single wall carbon nanotubes and copper material: molecular dynamics simulation. J Nanotechnol Eng Med 4(041):002

    Google Scholar 

  4. Bak P (1982) Commensurate phases, incommensurate phases and the devil’s staircase. Rep Prog Phys 45:587–629

    Article  Google Scholar 

  5. Banhart F (2009) Interactions between metals and carbon nanotubes: at the interface between old and new materials. Nanoscale 1:201–213

    Article  Google Scholar 

  6. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube-polymer interfacial strength. Appl Phys Lett 82:4140–4142

    Article  Google Scholar 

  7. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  8. Biosym (1990) Biosym Technologies Inc CVFF forcefield file in new format, converted from original format file shipped with Discover 2.6.0 / InsightII 1.1.0 /Insight 2.6

  9. Burgos JC, Jones E, Balbuena PB (2014) Dynamics of topological defects in single-walled carbon nanotubes during catalytic growth. J Phys Chem C 118:4808–4817

    Article  Google Scholar 

  10. Chandra N, Namilae S, Srinivasan A (2004) Linking atomistic and continuum mechanics using multiscale models. AIP Conf Proc 712:1571–1576

    Article  Google Scholar 

  11. Chen M, Song X, Lv Q, Gan Z, Liu S (2011) Bonding of carbon nanotubes onto microelectrodes by localized induction heating. Sens Actuat A 170:202–206

    Article  Google Scholar 

  12. Chen YL, Liu B, He XQ, Huang Y, Hwang KC (2010) Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos Sci Technol 70:1360–1367

    Article  Google Scholar 

  13. Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105:1157–1161

    Article  Google Scholar 

  14. Chowdhury SC, Okabe T (2007) Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos Part A 38:747–754

    Article  Google Scholar 

  15. Collins PG (2009) Defects and disorder in carbon nanotubes. Oxford University Press, Oxford

    Google Scholar 

  16. Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Detachment of nanotubes from a polymer matrix. Appl Phys Lett 81:3873–3875

    Article  Google Scholar 

  17. Cullinan MA, Culpepper ML (2010) Carbon nanotubes as piezoresistive microelectromechanical sensors: theory and experiment. Phys Rev B 82:115428

    Article  Google Scholar 

  18. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Article  Google Scholar 

  19. Dementev N, Feng X, Borguet E (2009) Fluorescence labeling and quantification of oxygen-containing functionalities on the surface of single-walled carbon nanotubes. Langmuir 25:7573–7577

    Article  Google Scholar 

  20. Dementev N, Ronca R, Borguet E (2012) Oxygen-containing functionalities on the surface of multi-walled carbon nanotubes quantitatively determined by fluorescent labeling. Appl Surf Sci 258:10185–10190

    Article  Google Scholar 

  21. Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  Google Scholar 

  22. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  23. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  Google Scholar 

  24. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. J Phys Chem B 106:3046–3048

    Article  Google Scholar 

  25. Frenkel D, Smit B (2002) Understanding molecular simulation. Academic Press, NewYork

    Google Scholar 

  26. Gibson JB, Goland AN, Milgram M, Vineyard GH (1960) Dynamics of radiation damage. Phys Rev 120:1229–1253

    Article  Google Scholar 

  27. Gojny F, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in cnt/epoxy-composites. Chem Phys Lett 370:820–824

    Article  Google Scholar 

  28. Halicioglu T, Pound GM (1975) Calculation of potential energy parameters from crystalline state properties. Phys Status Solidi A 30:619–623

    Article  Google Scholar 

  29. Hartmann S, Hölck O, Wunderle B (2012) Pull-out testing of SWCNTs simulated by molecular dynamics. Int J Theor Appl Nanotechnol 1:59–65

    Google Scholar 

  30. Hartmann S, Hölck O, Wunderle B (2013) Molecular dynamics simulations for mechanical characterization of cnt/gold interface and its bonding strength. In: 14th International Conference on Therm Mech and Multi-Phys Simul Exp Microelectron Microsyst (EuroSimE), Wroclaw

  31. Hartmann S, Hölck O, Blaudeck T, Hermann S, Schulz SE, Gessner T, Wunderle B (2014a) Quantitative in-situ scanning electron microscope pull-out experiments and molecular dynamics simulations of carbon nanotubes embedded in palladium. J Appl Phys 115(144):301

    Google Scholar 

  32. Hartmann S, Hölck O, Wunderle B (2014b) Mechanics of CNT-palladium interfaces for sensor applications simulated with molecular dynamics. Proc Mater Sci 3:454–460

    Article  Google Scholar 

  33. Hermanson GT (2013) Bioconjugate techniques. Academic Press, New York

    Google Scholar 

  34. Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuat A 136:51–61

    Article  Google Scholar 

  35. Hou PX, Liu C, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46:2003–2025

    Article  Google Scholar 

  36. Iijima S (1991) Helical microtubules of graphitic carbon. Nat 354:56–58

    Article  Google Scholar 

  37. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  38. Li Y, Liu Y, Peng X, Yan C, Liu S, Hu N (2011) Pull-out simulations on interfacial properties of carbon nanotube reinforced polymer nanocomposites. Comput Mater Sci 50:1854–1860

    Article  Google Scholar 

  39. Li Y, Liu S, Hu N, Han X, Zhou L, Ning H, Wu L, Alamusi Yamamoto G, Chang G, Hashida T, Atobe S, Fukunaga H (2013) Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites. J Appl Phys 113(144):304

    Google Scholar 

  40. Li Y, Chen C, Xu J, Zhang Z, Yuan B, Huang X (2015) Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. J Mater Sci 50:1117–1128. doi:10.1007/s10853-014-8668-3

    Article  Google Scholar 

  41. Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl Phys Lett 79:4225–4227

    Article  Google Scholar 

  42. Liu S, Hu N, Yamamoto G, Cai Y, Zhang Y, Liu Y, Li Y, Hashida T, Fukunaga H (2011) Investigation on cnt/alumina interface properties using molecular mechanics simulations. Carbon 49:3701–3704

    Article  Google Scholar 

  43. Maiti A, Ricca A (2004) Metal-nanotube interactions—binding energies and wetting properties. Chem Phys Lett 95:7–11

    Article  Google Scholar 

  44. Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  45. Meguid S, Al Jahwari F (2014) Modeling the pullout test of nanoreinforced metallic matrices using molecular dynamics. Acta Mech 225:1267–1275

    Article  Google Scholar 

  46. Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H (2007) Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc 129:2448–2449

    Article  Google Scholar 

  47. Nishijima H, Kamo S, Akita A, Nakayama Y (1999) Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid. Appl Phys Lett 74:4061–4063

    Article  Google Scholar 

  48. Pastewka L, Pou P, Perez R, Gumbsch P, Moseler M (2008) Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys Rev B 78:161402

    Article  Google Scholar 

  49. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431

    Google Scholar 

  50. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  51. Roy D, Bhattacharyya S, Rachamim A, Plati A, Saboungi ML (2010) Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using raman spectroscopy. J Appl Phys 107(043):501

    Google Scholar 

  52. Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cancado LG, Fantini C, Pimenta MA, Souza Filho AG (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157.1–157.15

    Article  Google Scholar 

  53. Song X, Gan Z, Liu S, Yan H, Lv Q (2009) Computational study of thermocompression bonding of carbon nanotubes to metallic substrates. J Appl Phys 106:104308

    Article  Google Scholar 

  54. Stampfer C, Helbling T, Obergfell D, Schöberle B, Tripp MK, Jungen A, Roth S, Bright VM, Hierold C (2006) Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett 6:233–237

    Article  Google Scholar 

  55. Stone A, Wales D (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  Google Scholar 

  56. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  57. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Imag Vis Comput 1:133–139

    Article  Google Scholar 

  58. Tsuda T, Ogasawara T, Deng F, Takeda N (2011) Direct measurements of interfacial shear strength of multi-walled carbon nanotube/peek composite using a nano-pullout method. Compos Sci Technol 71:1295–1300

    Article  Google Scholar 

  59. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–198

    Article  Google Scholar 

  60. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 74:3803–3805

    Article  Google Scholar 

  61. Wang MS, Golberg D, Bando Y (2010) Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects. Adv Mater 22:4071–4075

    Article  Google Scholar 

  62. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014

    Article  Google Scholar 

  63. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Howard Fairbrother D (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36

    Article  Google Scholar 

  64. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polym 44:7757–7764

    Article  Google Scholar 

  65. Wu Y, Huang M, Wang F, Huang XMH, Rosenblatt S, Huang L, Yan H, O’Brien SP, Hone J, Heinz TF (2008) Determination of the young’s modulus of structurally defined carbon nanotubes. Nano Lett 8:4158–4161

    Article  Google Scholar 

  66. Xia Z, Curtin WA (2004) Pullout forces and friction in multiwall carbon nanotubes. Phys Rev B 69:233408

    Article  Google Scholar 

  67. Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner R, Ruoff RS (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49:3709–3716

    Article  Google Scholar 

  68. Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat Mater 6:283–286

    Article  Google Scholar 

  69. Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16

    Article  Google Scholar 

  70. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555

    Article  Google Scholar 

  71. Zhang L, Wang X (2014) Tailoring pull-out properties of single-wall carbon nanotube bundles by varying binding-structure through molecular dynamics simulation. J Chem Theor Comput 10:3200–3206

    Article  Google Scholar 

  72. Zhang Y, Hu Z, Zhang Y, Ye L, Liu J (2011) Molecular dynamics simulation for the bonding energy of metal-SWNT interface. In: 12th International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai pp 1–4

  73. Zheng Q, Xia D, Xue Q, Yan K, Gao X, Li Q (2009) Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system. Appl Surf Sci 255:3534–3543

    Article  Google Scholar 

  74. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50:2797–2805. doi:10.1007/s10853-015-8837-z

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the VolkswagenStiftung within the Project Piezoresistive carbon nanotubes for condition monitoring and reliability considerations (II/88105 and 88107) and the Deutsche Forschungsgemeinschaft within the research unit FOR 1713 Sensoric Micro and Nano Systems. We thank Cornelius Krasselt (TU Chemnitz) for experimental assistance with the laser scanning confocal microscope. All MD simulations were performed with the Chemnitzer Hochleistungs–Linux–Cluster (CHiC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Hartmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, S., Sturm, H., Blaudeck, T. et al. Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals. J Mater Sci 51, 1217–1233 (2016). https://doi.org/10.1007/s10853-015-9142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9142-6

Keywords

Navigation