Skip to main content
Log in

Nanoengineered three-dimensional hybrid Fe2O3@PPy nanotube arrays with enhanced electrochemical performances as lithium–ion anodes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to optimize the electrode system of lithium–ion batteries (LIBs) for problems like lithium-ion diffusion, electron transport, and large volume change during cycling processes, a novel three-dimensional (3D) hybrid Fe2O3 nanotube array anode coated by polypyrrole (Fe2O3@PPy) is synthesized via a sacrificial template-accelerated hydrolysis method followed by a chemical vapor-phase polymerization process. In the hollow core–shell nanostructures, the conducting PPy layer could not only facilitate the electron transport, but also force the core to expand inward into the hollow space, which allows for free volume expansion of the Fe2O3 without mechanical breaking. Besides, the static outer surface is contributed to form a stable solid electrolyte interface film. As a result, the integration of 3D hybrid nanostructure electrode is capable of retaining a high capacity of 665 mA h g−1 after 150 cycles with a coulombic efficiency of above 97 %, revealing better cycling properties compared with bare Fe2O3 nanotube arrays’ anode. This nanoengineering strategy is proven to be an ideal candidate for the development of high-performance anode for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo JX, Chen L, Wang GJ, Zhang X, Li FF (2014) In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. J Power Sour 246:862–867

    Article  Google Scholar 

  2. Jiang SH, Yue WB, Gao ZQ, Ren Y, Ma H, Zhao XH, Liu YL, Yang XJ (2013) Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48:3870–3876. doi:10.1007/s10853-013-7189-9

    Article  Google Scholar 

  3. Xu WW, Zhao KN, Niu CJ, Zhang L, Cai ZY, Han CH, He L, Shen T, Yan MY, Qu LB, Mai LQ (2014) Heterogeneous branched core-shell SnO2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries. Nano Energy 8:196–204

    Article  Google Scholar 

  4. Liu H, Wang GX, Park J, Wang JZ, Liu HK, Zhang C (2009) Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochim Acta 54:1733–1736

    Article  Google Scholar 

  5. Wang W, Bu FX, Jiang JS (2015) Porous TiO2 coated α-Fe2O3 ginger-like nanostructures with enhanced electrochemical properties. Mater Lett 139:89–92

    Article  Google Scholar 

  6. Chen MH, Liu JL, Chao DL, Wang J, Yin JH, Lin JY, Fan HJ, Shen ZX (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372

    Article  Google Scholar 

  7. Wang RH, Xu CH, Sun J, Gao L, Lin CC (2013) Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J Mater Chem A 1:1794–1800

    Article  Google Scholar 

  8. Wu Z-S, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as Anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  9. Jin YH, Li Wang, Shang YM, Gao J, Li JJ, He XM (2015) Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochim Acta 151:109–117

    Article  Google Scholar 

  10. Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391. doi:10.1007/s10853-012-6292-7

    Article  Google Scholar 

  11. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sour. 264:161–167

    Article  Google Scholar 

  12. Chen J, Xu LN, Li WY, Gou XL (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586

    Article  Google Scholar 

  13. Su QM, Xie D, Zhang J, Du GH, Xu BS (2013) In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes. ACS Nano 7:9115–9121

    Article  Google Scholar 

  14. Zou MZ, Li JX, Wen WW, Chen LZ, Guan LH, Lai H, Huang ZG (2014) Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries. J Power Sour 270:468–474

    Article  Google Scholar 

  15. Wang BB, Wang G, Wang H (2015) Synthesis and electrochemical investigation of hollow hierarchical metal oxide microspheres for high performance lithium-ion batteries. Electrochim Acta 156:1–10

    Article  Google Scholar 

  16. Fan X, Dou P, Jiang AN, Ma DQ, Xu XH (2014) One-step electrochemical growth of three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode. ACS Appl Mater Interfaces 6:22282–22288

    Article  Google Scholar 

  17. Zeng WQ, Zheng FP, Li RZ, Zhan Y, Li YY, Liu JP (2012) Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale 4:2760–2765

    Article  Google Scholar 

  18. Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C (2015) As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta 151:222–229

    Article  Google Scholar 

  19. Wang B, Qiu TF, Li XL, Luo B, Hao L, Zhang YB, Zhi LJ (2015) Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes. J Mater Chem A 3:494–498

    Article  Google Scholar 

  20. Wu H, Chan G, Choi JW, Ryu I, Yao Y, Mcdowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotech 7:310–315

    Article  Google Scholar 

  21. Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater 13:621–625

    Article  Google Scholar 

  22. Hu J, Li H, Huang XJ, Chen LQ (2006) Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ion 177:2791–2799

    Article  Google Scholar 

  23. Han F, Li D, Li WC, Lei C, Sun Q, Lu AH (2013) Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv Funct Mater 23:1692–1700

    Article  Google Scholar 

  24. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128

    Article  Google Scholar 

  25. Li S, Qin XY, Zhang HR, Wu JX, He Y-B, Li BH, Kang FY (2014) Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries. Electrochem Commun 49:98–102

    Article  Google Scholar 

  26. Gowda SR, Reddy ALM, Shaijumon MM, Zhan XB, Ci LJ, Ajayan PM (2011) Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Nano lett 11:101–106

    Article  Google Scholar 

  27. Yoon T, Chae CJ, Sun Y-K, Zhao X, Kung HH, Lee JK (2011) Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. J Mater Chem 21:17325–17330

    Article  Google Scholar 

  28. Xu WW, Zhao KN, Niu CJ, Zhang L, Cai ZY, Han CH, He L, Shen T, Yan MY, Qu LB, Mai LQ (2014) Heterogeneous branched core-shell SnO2-PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries. Nano Energy 8:196–204

    Article  Google Scholar 

  29. Cui LF, Shen J, Cheng FY, Tao ZL, Chen J (2011) SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sour 196:2195–2201

    Article  Google Scholar 

  30. Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    Google Scholar 

  31. Liu JL, Zhou WW, Lai LF, Yang HP, Lim SH, Zhen YD, Yu T, Shen ZX, Lin JY (2013) Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano energy 2:726–732

    Article  Google Scholar 

  32. Song T, Xia JL, Lee J-H, Lee DH, Kwon M-S, Choi J-M, Wu J, Doo SK, Chang H, Park W, Zang DS, Kim H, Huang YG, Hwang K-C, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10:1710–1716

    Article  Google Scholar 

  33. Lotfabad EM, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2:2504–2516

    Article  Google Scholar 

  34. Desai UV, Xu CK, Wu JM, Gao D (2013) Hybrid TiO2-SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117:3232–3239

    Article  Google Scholar 

  35. Liu JP, Li YY, Fan HJ, Zhu ZH, Jiang J, Ding RM, Hu YY, Huang XT (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22:212–217

    Article  Google Scholar 

  36. Liu JP, Huang XT, Li YY, Ji XX, Li ZK, He X, Sun FL (2007) Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. J Phys Chem C 111:4990–4997

    Article  Google Scholar 

  37. Lv XX, Deng JJ, Wang J, Zhong J, Sun XH (2015) Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. J Mater Chem A 3:5183–5188

    Article  Google Scholar 

  38. Liu RQ, Li DY, Wang C, Li N, Li Q, Lu XJ, Spendelow JS, Wu G (2014) Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 6:73–81

    Article  Google Scholar 

  39. Wu C, Zhang H, Wu YX, Zhuang QC, Tian LL, Zhang XX (2014) Synthesis and characterization of Fe@Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries. Electrochim Acta 134:18–27

    Article  Google Scholar 

  40. Chen G, Rodriguez R, Fei L, Xu Y, Deng SG, Smirnov S, Luo HM (2014) A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries. J Power Sour 259:227–232

    Article  Google Scholar 

  41. Liang K, Gu TL, Cao ZY, Tang XZ, Hu WC, Wei BQ (2014) In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 9:245–251

    Article  Google Scholar 

  42. Zhao JF, Zhang SC, Liu WB, Du ZJ, Fang H (2014) Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433

    Article  Google Scholar 

  43. Cherian CT, Sundaramurthy J, Kalaivani M, Ragupathy P, Kumar PS, Thavasi V, Reddy MV, Sow CH, Mhaisalkar SG, Ramakrishna S, Chowdari BVR (2012) Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22:12198–12204

    Article  Google Scholar 

  44. Sun B, Horvat J, Kim HS, Kim W-S, Ahn J, Wang GX (2010) Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761

    Article  Google Scholar 

  45. Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472

    Article  Google Scholar 

  46. Wei DH, Liang JW, Zhu YC, Zhang JJ, Li XN, Zhang KL, Yuan ZQ, Qian YT (2013) Facile formation of graphene-encapsulated α-Fe2O3 nanorice as enhanced anode materials for lithium storage. Electrochim Acta 114:779–784

    Article  Google Scholar 

  47. Lotfabad EM, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D (2014) Origin of non-SEI related conlombic efficiency loss in carbons tested against Na and Li. J Mater Chem A 2:19685–19695

    Article  Google Scholar 

  48. Tian BB, Swiatowska J, Maurice V, Zanna S, Seyeux A, Klein LH, Marcus P (2013) Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries. J Phys Chem C 117:21651–21661

    Article  Google Scholar 

  49. Kaya S, Ogasawara H, Nilsson A (2015) Determination of the surface electronic structure of Fe3O4(111) by soft X-ray spectroscopy. Catal Today 240:184–189

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51143009 and 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yu, X., Meng, H. et al. Nanoengineered three-dimensional hybrid Fe2O3@PPy nanotube arrays with enhanced electrochemical performances as lithium–ion anodes. J Mater Sci 50, 5504–5513 (2015). https://doi.org/10.1007/s10853-015-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9096-8

Keywords

Navigation