Skip to main content
Log in

Track formation in III-N semiconductors irradiated by swift heavy ions and fullerene and re-evaluation of the inelastic thermal spike model

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

AlN, GaN, and InN were irradiated at room temperature with monatomic swift heavy ions and high-energy fullerenes. Ion track formation was studied using transmission electron microscopy in both plane view and cross-sectional modes. A full experimental description of ion track formation in these compounds is presented. AlN shows a remarkable resistance towards track formation; InN is the most sensitive and shows partial decomposition, likely into N2 and metallic clusters; the overlapping of the amorphous tracks in GaN does not give an amorphous layer because of a track-induced recrystallization. We discuss the application of the inelastic thermal spike model, which allows good and simple predictions of track radii in oxides, to the studied III-nitrides, and in general to semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M (1996) Ion track diameters in mica studied with scanning force microscopy. Nucl Instrum Methods Phys Res B 107:181–184

    Article  Google Scholar 

  2. Groult D, Hervieu M, Nguyen N, Raveau B (1988) 3.1 GeV-xenon ion latent tracks in Bi2Fe4O9: Mössbauer and electron microscopy studies. J Solid State Chem 76:248–259

    Article  Google Scholar 

  3. Price PB, Walker RM (1962) Observations of charged-particle tracks in solids. J Appl Phys 33:3400–3406

    Article  Google Scholar 

  4. Thibaudau F, Cousty J, Balanzat E, Bouffard S (1991) Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica. Phys Rev Lett 67:1582–1585

    Article  Google Scholar 

  5. Albrecht D, Armbruster P, Spohr R, Roth M, Schaupert K, Stuhrmann H (1985) Investigation of heavy ion produced defect structures in insulators by small angle scattering. Appl Phys A 37:37–46

    Article  Google Scholar 

  6. Kluth P, Schnohr C, Pakarinen O, Djurabekova F, Sprouster D, Giulian R, Ridgway M, Byrne A, Trautmann C, Cookson D, Nordlund K, Toulemonde M (2008) Fine structure in swift heavy ion tracks in amorphous SiO2. Phys Rev Lett 101:175503

    Article  Google Scholar 

  7. Hémon S, Chailley V, Dooryhée E, Dufour C, Gourbilleau F, Levesque F, Paumier E (1997) Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl Instrum Methods Phys Res B 122:563–565

    Article  Google Scholar 

  8. Meftah A, Brisard F, Costantini JM, Hage-Ali M, Stoquert JP, Studer F, Toulemonde M (1993) Swift heavy ions in magnetic insulators: a damage-cross-section velocity effect. Phys Rev B 48:920–925

    Article  Google Scholar 

  9. Trautmann C, Costantini JM, Meftah A, Schwartz K, Stoquert JP, Toulemonde M (1997) Swelling of SiO2 quartz induced by energetic heavy ions. MRS Online Proc Libr 504:123–128

    Article  Google Scholar 

  10. Busch MC, Slaoui A, Siffert P, Dooryhee E, Toulemonde M (1992) Structural and electrical damage induced by high energy heavy ions in SiO2/Si structures. J Appl Phys 71:2596–2601

    Article  Google Scholar 

  11. Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M (1998) Damage and track morphology in LiF crystals irradiated with GeV ions. Phys Rev B 58:11232–11240

    Article  Google Scholar 

  12. Costantini JM, Brisard F, Meftah A, Studer F, Toulemonde M (1993) Conductivity modifications of calcium-doped yttrium iron garnet by swift heavy ion irradiations. Radiat Eff Defects Solids 126:233–236

    Article  Google Scholar 

  13. Toulemonde M, Fuchs G, Nguyen N, Studer F, Groult D (1987) Damage processes and magnetic field orientation in ferrimagnetic oxides Y3Fe5O12 and BaFe12O19 irradiated by high-energy heavy ions: a Mossbauer study. Phys Rev B 35:6560–6569

    Article  Google Scholar 

  14. Itoh N, Duffy DM, Khakshouri S, Stoneham AM (2009) Making tracks: electronic excitation roles in forming swift heavy ion tracks. J Phys Condens Matt 21:474205

    Article  Google Scholar 

  15. Toulemonde M, Assmann W, Dufour C, Meftah A, Studer F, Trautmann C (2006) Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Ion Beam Sci 52:263–292

    Google Scholar 

  16. Naguib HM, Murti DK, Kelly R (1976) Criteria for the occurrence of fission-fragment tracks in crystalline substances. J Mater Sci 11:406–416. doi:10.1007/BF00540921

    Article  Google Scholar 

  17. Vetter J, Scholz R, Dobrev D, Nistor L (1998) HREM investigation of latent tracks in GeS and mica induced by high energy ions. Nucl Instrum Methods Phys Res B 141:747–752

    Article  Google Scholar 

  18. Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M (2008) Radiation damage formation in InP, InSb, GaAs, GaP, Ge, and Si due to fast ions. Phys Rev B 78:054111

    Article  Google Scholar 

  19. Wesch W, Herre O, Gaiduk PI, Wendler E, Klaumunzer S, Meier P (1998) Damage formation in InP due to high electronic excitation by swift heavy ions. Nucl Instrum Methods Phys Res B 146:341–349

    Article  Google Scholar 

  20. Gaiduk PI (2005) Discontinuous tracks in relaxed SiGe alloy layers: formation and thermal evolution. Vacuum 78:375–379

    Article  Google Scholar 

  21. Szenes G, Horvath ZE, Pecz B, Paszti F, Toth L (2002) Tracks induced by swift heavy ions in semiconductors. Phys Rev B 65:045206

    Article  Google Scholar 

  22. Komarov FF, Gaiduk PI, Vlasukova LA, Didyk AJ, Yuvchenko VN (2003) Track formation in germanium crystals irradiated with superhigh-energy ions. Vacuum 70:75–79

    Article  Google Scholar 

  23. Wesch W, Kamarou A, Wendler E (2004) Effect of high electronic energy deposition in semiconductors. Nucl Instrum Methods Phys Res B 225:111–128

    Article  Google Scholar 

  24. Toulemonde M, Dural J, Nouet G, Mary P, Hamet JF, Beaufort MF, Desoyer JC, Blanchard C, Auleytner J (1989) High energy heavy ion irradiation of silicon. Phys Status Solidi A 114:467–473

    Article  Google Scholar 

  25. Levalois M, Bogdanski P, Toulemonde M (1992) Induced damage by high energy heavy ion irradiation at the GANIL accelerator in semiconductor materials. Nucl Instrum Methods Phys Res B 63:14–20

    Article  Google Scholar 

  26. Kamarou A, Wesch W, Wendler E, Klaumunzer S (2004) Damage formation and annealing in InP due to swift heavy ions. Nucl Instrum Methods Phys Res B 225:129–135

    Article  Google Scholar 

  27. Canut B, Bonardi N, Ramos SMM, Della-Negra S (1998) Latent tracks formation in silicon single crystals irradiated with fullerenes in the electronic regime. Nucl Instrum Methods Phys Res B 146:296–301

    Article  Google Scholar 

  28. Colder A, Marty O, Canut B, Levalois M, Marie P, Portier X, Ramos SMM, Toulemonde M (2001) Latent track formation in germanium irradiated with 20, 30 and 40 MeV fullerenes in the electronic regime. Nucl Instrum Methods Phys Res B 174:491–498

    Article  Google Scholar 

  29. Dhamodaran S, Pathak AP, Dunlop A, Jaskierowicz G, Della Negra S (2007) Energetic cluster irradiation of InP. Nucl Instrum Methods Phys Res B 256:229–232

    Article  Google Scholar 

  30. Colder A, Canut B, Levalois M, Marie P, Portier X, Ramos SMM (2002) Latent track formation in GaAs irradiated with 20, 30, and 40 MeV fullerenes. J Appl Phys 91:5853–5857

    Article  Google Scholar 

  31. Kucheyev SO, Williams JS, Pearton SJ (2001) Ion implantation into GaN. Mater Sci Eng 33:51–107

    Article  Google Scholar 

  32. Catarino N, Nogales E, Franco N, Darakchieva V, Miranda SMC, Mendez B, Alves E, Marques JG, Lorenz K (2012) Enhanced dynamic annealing and optical activation of Eu implanted a-plane GaN. Europhys Lett 97:68004

    Article  Google Scholar 

  33. Ruterana P, Lacroix B, Lorenz K (2011) A mechanism for damage formation in GaN during rare earth ion implantation at medium range energy and room temperature. J Appl Phys 109:013506

    Article  Google Scholar 

  34. Premchander P, Baskar K (2010) GaN optical degradation during high energy Sn5+ ion irradiation. J Mater Sci 45:6799–6804. doi:10.1007/s10853-010-4777-9

    Article  Google Scholar 

  35. Suresh S, Ganesh V, Deshpande UP, Shripathi T, Asokan K, Kanjilal D, Baskar K (2011) Structural, optical, and electrical characteristics of 70 Mev Si5+ ion irradiation-induced nanoclusters of gallium nitride. J Mater Sci 46:1015–1020. doi:10.1007/s10853-010-4866-9

    Article  Google Scholar 

  36. Zinkle SJ, Skuratov VA, Hoelzer DT (2002) On the conflicting roles of ionizing radiation in ceramics. Nucl Instrum Methods Phys Res B 191:758–766

    Article  Google Scholar 

  37. Mansouri S, Marie P, Dufour C, Nouet G, Monnet I, Lebius H (2008) Swift heavy ions effects in III–V nitrides. Nucl Instrum Methods Phys Res B 266:2814–2818

    Article  Google Scholar 

  38. Kucheyev SO, Timmers H, Zou J, Williams JS, Jagadish C, Li G (2004) Lattice damage produced in GaN by swift heavy ions. J Appl Phys 95:5360

    Article  Google Scholar 

  39. Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press, Oakland

    Google Scholar 

  40. Fleischer RL, Price PB, Walker RM, Hubbard EL (1967) Criterion for registration in dielectric track detectors. Phys Rev 156:353–355

    Article  Google Scholar 

  41. Fleischer R (2004) Fission tracks in solids—production mechanisms and natural origins. J Mater Sci 39:3901–3911. doi:10.1023/B:JMSC.0000031471.17343.32

    Article  Google Scholar 

  42. Lesueur D, Dunlop A (1993) Damage creation via electronic excitations in metallic targets part II: a theoretical model. Radiat Eff Defects Solids 126:163–172

    Article  Google Scholar 

  43. Stampfli P, Bennemann K (1994) Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions. Phys Rev B 49:7299–7305

    Article  Google Scholar 

  44. Itoh N, Marshall Stoneham A (1998) Excitonic model of track registration of energetic heavy ions in insulators. Nucl Instrum Methods Phys Res B 146:362–366

    Article  Google Scholar 

  45. Seitz F, Koehler JS (1956) Displacement of atoms during irradiation. Solid State Phys 1:305–448

    Google Scholar 

  46. Lifshits IM, Kaganov MI, Tanatarov LV (1960) On the theory of radiation-induced changes in metals. J Nucl Energy A 12:69–78

    Google Scholar 

  47. Chadderton LT, Montagu-Pollock HM (1963) Fission fragment damage to crystal lattices: heat-sensitive crystals. Proc R Soc Lond A 274:239–252

    Article  Google Scholar 

  48. Seiberling LE, Griffith JE, Tombrello TA (1980) A thermalized ion explosion model for high energy sputtering and track registration. Radiat Eff 52:201–210

    Article  Google Scholar 

  49. Trinkaus H, Ryazanov A (1995) Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys Rev Lett 74:5072–5075

    Article  Google Scholar 

  50. Szenes G (1995) General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys Rev B 51:8026–8029

    Article  Google Scholar 

  51. Dufour C, Audouard A, Beuneu F, Dural J, Girard JP, Hairie A, Levalois M, Paumier E, Toulemonde M (1993) A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage? J Phys 5:4573–4584

    Google Scholar 

  52. Dufour C, Khomenkov V, Rizza G, Toulemonde M (2012) Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J Phys D 45:065302

    Article  Google Scholar 

  53. Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res B 166–167:903–912

    Article  Google Scholar 

  54. Toulemonde M, Assmann W, Trautmann C, Grüner F (2002) Jetlike component in sputtering of lif induced by swift heavy ions. Phys Rev Lett 88:057602

    Article  Google Scholar 

  55. Klaumunzer S (2006) Thermal-spike models for ion track physics: a critical examination. Mat Fys Medd. 52:293–328

    Google Scholar 

  56. Szenes G (2011) Comparison of two thermal spike models for ion-solid interaction. Nucl Instrum Methods Phys Res B 269:174–179

    Article  Google Scholar 

  57. Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M (2006) Swift heavy ion irradiation of InP: thermal spike modeling of track formation. Phys Rev B 73:184107

    Article  Google Scholar 

  58. Osmani O, Medvedev N, Shchleberger M, Rethfeld B (2011) Energy dissipation in dielectrics after swift heavy-ion impact: a hybrid model. Phys Rev B 84:214105

    Article  Google Scholar 

  59. Rizza G, Coulon P, Khomenkov V, Dufour C, Monnet I, Toulemonde M, Perruchas S, Gacoin T, Mailly D, Lafosse X, Ulysse C, Dawi E (2012) Rational description of the ion-beam shaping mechanism. Phys Rev B 86:035450

    Article  Google Scholar 

  60. Baudin K, Brunelle A, Chabot M, Della-Negra S, Depauw J, Gardes D, Hakansson P, Le Beyec Y, Billebaud A, Fallavier M, Remillieux J, Poizat JC, Thomas JP (1994) Energy loss by MeV carbon clusters and fullerene ions in solids. Nucl Instrum Methods Phys Res B 94:341–344

    Article  Google Scholar 

  61. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM—The stopping and range of ions in matter. SRIM Company, Chester

    Google Scholar 

  62. Mansouri S, Marie P, Dufour C, Nouet G, Monnet I, Lebius H, Benamara Z (2008) Swift heavy ion effects in gallium nitride. Acta Electroteh 49:147–150

    Google Scholar 

  63. Rayleigh JSW (1878) On the stability of jets. Proc Lond Math Soc. 10:4–13

    Article  Google Scholar 

  64. Didyk AY, Khalil AS (2010) Properties of indium phosphite and selected compounds under irradiation with swift heavy ions. Phys Part Nucl 41:230–284

    Article  Google Scholar 

  65. Schnohr C, Kluth P, Giulian R, Llewellyn D, Byrne A, Cookson D, Ridgway M (2010) Swift-heavy-ion-induced damage formation in III-V binary and ternary semiconductors. Phys Rev B 81:075201

    Article  Google Scholar 

  66. Zhang Y, Ishimaru M, Jagielski J, Zhang W, Zhu Z, Saraf LV, Jiang W, Thome L, Weber WJ (2010) Damage and microstructure evolution in GaN under Au ion irradiation. J Phys D 43:085303

    Article  Google Scholar 

  67. Lacroix B, Chauvat MP, Ruterana P, Lorenz K, Alves E, Syrkin A (2011) The high sensitivity of inn under rare earth ion implantation at medium range energy. J Phys D 44:295402

    Article  Google Scholar 

  68. Sall M, Monnet I, Grygiel C, Ban D’Etat B, Lebius H, Leclerc S, Balanzat E (2013) Synergy between electronic and nuclear energy losses for color center creation in AlN. Europhys Lett 102:26002

    Article  Google Scholar 

  69. Baranov IA, Martynenko YV, Tsepelevich SO, Yavlinskii YN (1988) Inelastic sputtering of solids by ions. Sov Physics Uspekhi 31:1015–1034

    Article  Google Scholar 

  70. Waligorski MPR, Hamm RN, Katz R (1986) The radial distribution of dose around the path of a heavy ion in liquid water. Int J Rad Appl Instrum D 11:309–319

    Google Scholar 

  71. Toulemonde M, Weber W, Li G, Shutthanandan V, Kluth P, Yang T, Wang Y, Zhang Y (2011) Synergy of nuclear and electronic energy losses in ion-irradiation processes: the case of vitreous silicon dioxide. Phys Rev B 83:054106

    Article  Google Scholar 

  72. Koshchenko VI, Grinberg YK, Demidenko AF (1984) Thermodynamic properties of AlN (5–2700 K), GaP (5–1500 K), and BP (5–800 K). Inorg Mater 20:1787–1790

    Google Scholar 

  73. Slack GA, Tanzilli RA, Pohl RO, Vandersande JW (1987) The intrinsic thermal conductivity of AlN. J Phys Chem Solids 48:641–647

    Article  Google Scholar 

  74. Nipko JC, Loong CK (1998) Phonon excitations and related thermal properties of aluminum nitride. Phys Rev B 57:10550–10554

    Article  Google Scholar 

  75. Sichel EK, Pankove JI (1977) Thermal conductivity of GaN, 25–360 K. J Phys Chem Solids 38:330

    Article  Google Scholar 

  76. Davydov VY, Emtsev VV, Goncharuk IN, Smirnov AN, Petrikov VD, Mamutin VV, Vekshin VA, Ivanov SV, Smirnov MB, Inushima T (1999) Experimental and theoretical studies of phonons in hexagonal InN. Appl Phys Lett 75:3297–3299

    Article  Google Scholar 

  77. Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wrablewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P (1998) Thermal properties of indium nitride. J Phys Chem Sol 59:289–295

    Article  Google Scholar 

  78. Okhotin AS, Pushkarskii AS, Gorbachev VV (1972) Thermophysical properties of semiconductors. Atom Publ. House, Moscow

    Google Scholar 

  79. Carruthers JA, Geballe TH, Rosenberg HM, Ziman JM (1957) The thermal conductivity of germanium and silicon between 2 and 300°K. Proc R Soc Lond A 238:502–514

    Article  Google Scholar 

  80. Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 3°k to the melting point, semiconducting and other major properties of gallium arsenide. Phys Rev 134:A1058–A1069

    Article  Google Scholar 

  81. Blakemore JS (1982) J Appl Phys 53:R123–R181

    Article  Google Scholar 

  82. Piesbergen U (1963) Die durchschnittlichen Atomwärmen der AIIIBV Halbleiter AlSb, GaAs, GaSb, InP, InAs, InSb und die Atomwarme des elements Germanium zwischen 12 und 273°K. Zeitschrift für Naturforschung A 18:141–147

    Article  Google Scholar 

  83. Aliev SA, Nashelskii AY, Shalyt SS (1965) Thermal conductivity and thermalelectric power of N-type indium phosphite at low temperatures. Sov Phys Solid State 7:1287

    Google Scholar 

  84. Madelung O, Rossler U, Schulz M (2002) Group IV Elements, IV–IV and III–V Compounds. Part b-electronic, transport, optical and other properties. Springer, Heidelberg

    Book  Google Scholar 

  85. Adachi S (2004) Handbook of physical properties of semiconductors. Kluwer Academic Publishers, Norwell

    Google Scholar 

  86. Dietze W, Doering E, Glasow P, Langheinrich W, Ludsteck A, Mader H, Muhlbauer A, Munch W, Runge H, Schleicher L (1983) Technology of Si, Ge, and SiC/Technologie von Si, Ge und SiC. Springer, New York

    Google Scholar 

  87. Toulemonde M, Benyagoub A, Trautmann C, Khalfaoui N, Boccanfuso M, Dufour C, Gourbilleau F, Grob JJ, Stoquert JP, Costantini JM, Haas F, Jacquet E, Voss KO, Meftah A (2012) Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: evidence for two thresholds of damage creation. Phys Rev B 85:054112

    Article  Google Scholar 

  88. Dietze W, Doering E, Glasow P, Langheinrich W, Ludsteck A, Mader H, Weiss H, Runge H, Schleicher L (1983) Technology of Si, Ge, and SiC/Technologie Von Si, Ge und SiC. Springer, Heidelberg

    Google Scholar 

  89. Chettah A, Kucal H, Wang ZG, Kac M, Meftah A, Toulemonde M (2009) Behavior of crystalline silicon under huge electronic excitations: a transient thermal spike description. Nucl Instrum Methods Phys Res B 267:2719–2724

    Article  Google Scholar 

  90. Takahashi K, Yoshikawa A, Sandhu A (2007) Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. Springer, London

    Book  Google Scholar 

  91. Kucheyev SO, Williams JS, Jagadish C, Zou J, Li G, Titov AI (2001) Effect of ion species on the accumulation of ion-beam damage in GaN. Phys Rev B 64:035202

    Article  Google Scholar 

  92. Williams JS (1998) Ion implantation of semiconductors. Mat Sci Eng 253:8–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the GANIL and ALTO accelerators teams for providing the ion beams. M. Sall is grateful to the “Région Basse-Normandie” for its partial contribution to his Doctoral Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Monnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sall, M., Monnet, I., Moisy, F. et al. Track formation in III-N semiconductors irradiated by swift heavy ions and fullerene and re-evaluation of the inelastic thermal spike model. J Mater Sci 50, 5214–5227 (2015). https://doi.org/10.1007/s10853-015-9069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9069-y

Keywords

Navigation