Skip to main content

Advertisement

Log in

Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of coatings in biomaterials has been fundamental on the applicability of many medical devices and has helped improve mechanical properties such as wear and fatigue and biological properties such as biocompatibility and bioactivity of implant prosthesis, thus, in essence, ameliorating human quality life. The aim of the present paper is to give a review on cold spray (CS) coating systems that are emerging in orthopedics industry (internal fixation systems and prosthesis) as well as those for antibacterial purposes (in body and touch external surfaces). These studies are very new, the oldest dating from the half of last decade and most deal with the improvement of biocompatibility and bioactivity of hard tissue replacement; therefore, research on biocoatings is in constant development with the aim to produce implant surfaces that provide a balance between cell adhesion and low cytotoxicity, mechanical properties, and functionalization. CS offers many advantages over conventional high-temperature processes and seems to be able to become competitive in front of the low-temperature techniques. It is mainly cost effective, appropriate for oxygen-sensitive materials, and environmentally green. It basically involves the use of feedstock material in powder form, which is supersonically sprayed onto the appropriate substrate but without any melting as it occurs in conventional thermal spray processes. Biocompatible metallic materials and polymers have been successfully deposited by this method because it is based on the plasticity of the coating material; pure ceramic deposits, for example of hydroxyapatite, are still a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gaona M (2007) Recubrimientos biocompatibles obtenidos por Proyección Térmica y estudio in vitro de la función osteoblástica. PhD thesis. Universitat de Barcelona

  2. Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Google Scholar 

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Introduction—biomaterials science: an evolving, multidisciplinary endeavor. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) biomaterials science, 3rd edn. Academic Press, London

    Google Scholar 

  4. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Google Scholar 

  5. William DF (1987) Consensus and definitions in biomaterials. In: de Potter C, de Lange K, de Groot K, Lee AJC (eds) Advances in biomaterials. Elsevier, Amsterdam, pp 11–16

    Google Scholar 

  6. Cao W, Hench LL (1996) Bioactive materials. Ceram Inter 22:493–507

    Google Scholar 

  7. Jones J, Clare A (2012) Bio-glasses: an introduction. Wiley, Chichester

    Google Scholar 

  8. Kalita S (2008) Nanostructured biomaterials. In: Seal S (ed) Functional nanostructures. Springer, New York

    Google Scholar 

  9. Bronziono JD (2000) The biomedical engineering handbook, vol 1, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  10. Salinas AJ, Vallet-Regi M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3:11116–11131

    Google Scholar 

  11. Katti KS (2004) Biomaterials in total joint replacement. Colloid Surf B 39:133–142

    Google Scholar 

  12. Bauer S, Schmuki P, von der Mark K, Park J (2013) Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog Mater Sci 58:261–326

    Google Scholar 

  13. Khan SP, Auner GG, Newaz GM (2005) Influence of nanoscale surface roughness on neural cell attachment on silicon. Nanomed Nanotechnol Biol Med 1:125–129

    Google Scholar 

  14. Yun H-S, Park J-W, Kim S-H, Kim Y-J, Jang J-H (2011) Effect of the pore structure of bioactive glass balls on biocompatibility in vitro and in vivo. Acta Biomater 7:2651–2660

    Google Scholar 

  15. Singhatanadgit W (2009) Biological responses to new advanced surface modifications of endosseous medical implants. Bone Tissue Regen Insights 2:1–11

    Google Scholar 

  16. Lin L, Wang H, Ni M, Rui Y, Cheng T-Y, Cheng C-K (2014) Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Transl 2:35–42

    Google Scholar 

  17. Yang YZ, Tian JM, Tian JT, Chen ZQ, Deng XJ, Zhang DH (2000) Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying. J Biomed Mater Res 52:333–337

    Google Scholar 

  18. Endres S, Wilke M, Knöll P, Frank H, Kratz M, Wilke A (2008) Correlation of in vitro and in vivo results of vacuum plasma sprayed titanium implants with different surface topography. J Mater Sci Mater Med 19:1117–1125

    Google Scholar 

  19. Borsari V, Giavaresi G, Fini M, Torricelli P, Tschon M, Chiesa R (2005) Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials 26:4948–4955

    Google Scholar 

  20. Chen Y, Zheng X, Ji H, Ding C (2007) Effect of Ti–OH formation on bioactivity of vacuum plasma sprayed titanium coating after chemical treatment. Surf Coat Technol 202:494–498

    Google Scholar 

  21. Jaeggi C, Mooser R, Frauchiger V, Wyss P (2009) 3D characterization of open porous vacuum plasma sprayed titanium coatings by means of high resolution micro computer tomography. Mater Lett 63:2643–2645

    Google Scholar 

  22. Kinos T, Chen SL, Siitonen P, Kettunen P (1996) Densification of plasma-sprayed titanium and tantalum coatings. JTST 5:439–444

    Google Scholar 

  23. Stanisic J, Kosikowsky D, Mohanty PS (2005) High temperature erosion behavior of thermal sprayed tantalum. In: Sudarshan TS, Stiglich JJ (eds). Proceedings of the 19th International Conference on Surface Modification Technologies, pp 28–33. ASM International, Materials Park

  24. Balla VK, Bodhak S, Bose S, Bandyopadhyay A (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6:3349–3359

    Google Scholar 

  25. Matson DW, Merz MD, McClanahan ED (1992) High rate sputter deposition of wear resistant tantalum coatings. J Va Sci Technol A 10:1791–1796

    Google Scholar 

  26. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Google Scholar 

  27. Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymer 3:340–366

    Google Scholar 

  28. Melaiye A, Youngs WJ (2005) Silver and its application as an antimicrobial agent. Expert Opin Ther Patents 15:125–130

    Google Scholar 

  29. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262

    Google Scholar 

  30. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M et al (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomater 25:5547–5556

    Google Scholar 

  31. Tobin EJ, Bambauer R (2003) Silver coating of dialysis catheters to reduce bacterial colonization and infection. Ther Apher Dial 7:504–509

    Google Scholar 

  32. Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K (2003) Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 24:2759–2765

    Google Scholar 

  33. Dowling DP, Donnelly K, McConnell ML, Eloy R, Arnaud MN (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606

    Google Scholar 

  34. Bosetti M, Massè A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Google Scholar 

  35. Noda I, Miyaji F, Ando Y, Miyamoto H, Shimazaki T, Yonekura Y et al (2009) Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J Biomed Mater Res Part B 89B:456–465

    Google Scholar 

  36. Ando Y, Miyamoto H, Noda I, Sakurai N, Akiyama T, Yonekura Y et al (2010) Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater Sci Eng C 30:175–180

    Google Scholar 

  37. Miola M, Ferraris S, Di Nunzio S, Robotti PF, Bianchi G, Fucale G et al (2009) Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. J Mater Sci Mater Med 20:741–749

    Google Scholar 

  38. Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104

    Google Scholar 

  39. Li B, Liu X, Cao C, Meng F, Dong Y, Cui T et al (2008) Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver. Appl Surf Sci 255:452–454

    Google Scholar 

  40. Zheng X, Chen Y, Xie Y, Ji H, Huang L, Ding C (2009) Antibacterial property and biocompatibility of plasma sprayed hydroxyapatite/silver composite coatings. J Therm Spray Technol 18:463

    Google Scholar 

  41. Fernández J, Gaona M, Guilemany JM (2004) Tribological study of plasma hydroxyapatite coatings. Key Eng Mater 254–256:383–386

    Google Scholar 

  42. Heimann RB, Vu TA (1997) Low-pressure plasma-sprayed (LPPS) bioceramic coatings with improved adhesion strength and resorption resistance. J Therm Spray Technol 6:145–149

    Google Scholar 

  43. Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 58:570–592

    Google Scholar 

  44. Tsui YC, Doyle C, Clyne TW (1998) Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: mechanical properties and residual stress levels. Biomater 19:2015–2029

    Google Scholar 

  45. Fernández J, Gaona M, Guilemany JM (2007) Effect of heat treatments on HVOF hydroxyapatite coatings. J Therm Spray Tech 16:220–228

    Google Scholar 

  46. Lima RS, Khor KA, Li H, Cheang P, Marple BR (2005) HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Mater Sci Eng A 396:181–187

    Google Scholar 

  47. Khor K, Li H, Cheang P (2003) Processing–microstructure–property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomater 24:2233–2243

    Google Scholar 

  48. Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compd 464:282–287

    Google Scholar 

  49. Melero H (2014) Recubrimientos biocompatibles de Hidroxiapatita-Titania obtenidos mediante Proyección Térmica de Alta Velocidad (HVOF). PhD thesis. Universitat de Barcelona

  50. Pajares López M, Hernández Cortés P, Peregrinaf Palomares M, Hernández Hernández MA (1998) Vástagos cementados y no cementados en artroplastias totales de cadera por coxopatías mecánicas. Rev Esp Cir Osteoartic 33:59–65

  51. Chern Lin JH, Liu ML, Ju CP (1994) Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V. J Mater Sci Mater Med 5:279–283

    Google Scholar 

  52. Wheeler DL, Montfort MJ, McLoughlin SW (2001) Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res 55:603–612

    Google Scholar 

  53. Floroian L, Popescu A, Servan N, Mihailescu Ion N. Polymer-bioglass composite coatings: a promising alternative for advanced biomedical implants. http://cdn.intechopen.com/pdfs-wm/16716.pdf. Accessed 11 April 2015

  54. Cai F, Miyata C, Huang X, Yang Q (2014) Microstructure, bioactivity and wear resistance of sintered composite Co-Cr-Mo/Bioglass((R)) for medical implant applications. Int J Surf Sci Eng 8:264–281

    Google Scholar 

  55. Pourhashem S, Afshar A (2014) Double layer bioglass-silica coatings on 316L stainless steel by sol-gel method. Ceram Int 40:993–1000

    Google Scholar 

  56. Ananth KP, Suganya S, Mangalaraj D, Ferreira JMF, Balamurugan A (2013) Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation. Mater Sci Eng C 33:4160–4166

    Google Scholar 

  57. Wang DG, Chen CZ, Jin QP, Li HC, Pan YK (2014) HA/bioglass composite films deposited by pulsed laser with different substrate temperature. Appl Phys A 114:897–902

    Google Scholar 

  58. Sun L, Berndt CC, Khor KA, Cheang HN, Karlis A (2002) Gross, Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res 62:228–236

    Google Scholar 

  59. Formin AA, Steinhauer AB, Lyasnikov VN, Wenig SB, Zakharevich AM (2012) Nanocrystalline structure of the surface layer of plasma-sprayed hydroxyapatite coatings obtained upon preliminary induction heat treatment of metal base. Tech Phys Lett 38:481–483

    Google Scholar 

  60. Kurzweg H, Heimann RB, Troczynski T, Wayman ML (1998) Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia. Biomaterials 19:1507–1511

    Google Scholar 

  61. F1609-08 (2014) Standard Specification for calcium phosphate Coatings for Implantable Materials

  62. ISO Standard 13779-1:2008 Implants for surgery—Hydroxyapatite—Part 1: Ceramic hydroxyapatite

  63. ISO Standard 13779-1:2008 Implants for surgery—Hydroxyapatite—Part 2: Coatings of hydroxyapatite

  64. ISO Standard 13779-1:2008 Implants for surgery—Hydroxyapatite—Part 3: Chemical analysis and chartacterization of crystallinity and phase purity

  65. ASTM F 2068-00 Standard Specification for Femoral Prostheses—Metallic Implants

  66. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: a review paper. Int J Adhes Adhes 48:238–257

    Google Scholar 

  67. Kuo MC, Yen SK (2002) The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C 20:153–160

    Google Scholar 

  68. Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103. doi:10.1007/s10853-007-1853-x

    Google Scholar 

  69. Darr JA, Guo ZX, Raman V, Bououdina M, Rehman IU (2004) Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chem Commun 2004:696–697

    Google Scholar 

  70. Li H, Khor KA, Cheang P (2002) Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials 23:85–91

    Google Scholar 

  71. Melero H, Fargas G, Garcia-Giralt N, Fernández J, Guilemany JM (2014) Mechanical performance of bioceramic coatings obtained by high-velocity oxy-fuel spray for biomedical purposes. Surf Coat Technol 242:92–99

    Google Scholar 

  72. Melero H, Torrell M, Fernández J, Gomes JR, Guilemany JM (2013) Tribological characterization of biocompatible HAp-TiO2 coatings obtained by high velocity oxy-fuel spray. Wear 305:8–13

    Google Scholar 

  73. Bhadang KA, Gross KA (2004) Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 25:4935–4945

    Google Scholar 

  74. Gu YW, Khor KA, Pan D, Cheang P (2004) Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti–6Al–4V composite coatings in simulated body fluid. Biomaterials 25:3177–3185

    Google Scholar 

  75. Fathi MH, Azam F (2007) Novel hydroxyapatite/tantalum surface coating for metallic dental implant. Mater Lett 61:1238–1241

    Google Scholar 

  76. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S (2012) Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces 4:1341–1349

    Google Scholar 

  77. Yonekura Y, Miyamoto H, Shimazaki T, Ando Y, Noda I, Mawatari M et al (2011) Osteoconductivity of thermal-sprayed silver-containing hydroxyapatite coating in the rat tibia. J Bone Jt Surg 93B:644–649

    Google Scholar 

  78. Shimazaki T, Miyamoto H, Ando Y, Noda I, Yonekura Y, Kawano S et al (2010) In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J of Biomed Mater Res Part B 92B:386–389

    Google Scholar 

  79. Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E et al (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28:618–624

    Google Scholar 

  80. Green SM, Schlegel J (2001) A polyaryletherketone biomaterial for use in medical implant applications. Polym for the Med Ind Proc, Brussels, 14–15 May 2001, pp 1–7

  81. Li H, Zou X, Woo C, Ding M, Lind M, Bünger C (2007) Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant. J Biomed Mater Res Part B 81B:194–200

    Google Scholar 

  82. Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445

    Google Scholar 

  83. Roeder RK, Conrad TL (2012) Bioactive polyaryletherketone composites. In: Kurtz SM (ed) PEEK biomaterials handbook. William Andrew Publishing, Oxford, pp 163–179

    Google Scholar 

  84. Riner M, Roth A, Brandsberg F, Wintermantel E, Mayer J. Development of a human hip endoprosthesis stem made by injection molding of carbon fiber reinforced PEEK. http://www.iccm-central.org/Proceedings/ICCM13proceedings/SITE/PAPERS/paper-1409.pdf

  85. Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med 224:1329–1343

    Google Scholar 

  86. Furlong R, Osborn J (1991) Fixation of hip prostheses by hydroxyapatite ceramic coatings. J Bone Jt Surg 73B:741–745

    Google Scholar 

  87. Jaffe W, Scott D (1999) Total hip arthroplasty with hydroxyapatite-coated prostheses. In: Imura S, Wada M, Omori H (eds) Joint arthroplasty. Springer, Tokyo, pp 159–187

    Google Scholar 

  88. Pramanik S, Agarwak AK, Rai KN (2005) Chronology of total hip joint replacement and materials development. Trends Biomater Artif Organs 19:15–26

    Google Scholar 

  89. Cross MJ, Parish EN (2005) A hydroxyapatite-coated total knee replacement. J Bone Jt Surg Br 87B:1073–1076

    Google Scholar 

  90. Manley MTC, D’Aantonio WN, Edin JA, Geesink JA, Rudolph GT (1998) Fixation of acetabular cups without cement in total hip arthroplasty. A comparison of three different implant surfaces at a minimum duration of follow-up of five years*. J Bone Jt Surg 80:1175–1185

    Google Scholar 

  91. Nilsson KG, Kärrholm J, Carlsson L, Dalén T (1999) Hydroxyapatite coating versus cemented fixation of the tibial component in total knee arthroplasty: prospective randomized comparison of hydroxyapatite-coated and cemented tibial components with 5-year follow-up using radiostereometry. J Arthroplast 14:9–20

    Google Scholar 

  92. Zhang S (2011) Biological and biomedical coatings handbook, vol 2. Taylor & Francis, Boca Raton

    Google Scholar 

  93. Davis JR (2004) Introduction to thermal spray processing. In: Davis JR (ed) Handbook of thermal spray technology. ASM International, Materials Park, pp 3–13

    Google Scholar 

  94. Davis JR (2004) Thermal spray processes. In: Davis JR (ed) Handbook of thermal spray technology. ASM International, Materials Park, pp 54–76

    Google Scholar 

  95. Fernández J, Guilemany JM, Gaona M (2005) La proyección térmica en la obtención de recubrimientos biocompatibles: ventajas de la proyección térmica por alta velocidad (HVOF) sobre la proyección térmica por plasma atmosférico (APS). Biomechanics 13:16–39

    Google Scholar 

  96. Kang AS, Singh G, Chawla V (2013) Some problems associated with thermal sprayed ha coatings: a review. Int J Surf Eng Mater Surf Eng Mater Technol 3:10–20

    Google Scholar 

  97. Villa M, Dosta S, Fernández J, Guilemany JM (2012) La proyección fría (CGS): Una alternativa a las tecnologías convencionales de deposición. Rev Metal 48:175–191

    Google Scholar 

  98. Champagne Victor K (2007) The cold spray materials deposition process: fundamentals and applications. Woodhead, Cambridge

    Google Scholar 

  99. Ghelichi R, Guagliano M (2009) Coating by the cold spray process: a state o the art. Fratt Integr Strutt 8:30–44

    Google Scholar 

  100. Singh HR, Sidhu TS, Kalsi SBS (2012) Cold spray technology: future of coating deposition processes. Frat Integr Strutt 22:69–84

    Google Scholar 

  101. Morgan R, Fox P, Pattison J, Sutcliffe C, O’Neill W (2004) Analysis of cold gas dynamically sprayed aluminium deposits. Mater Lett 58:1317–1320

    Google Scholar 

  102. Suhonen T, Varis T, Dosta S, Torrell M, Guilemany JM (2013) Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Mater 61:6329–6337

    Google Scholar 

  103. Champagne VK, Helfritch DJ (2014) Mainstreaming cold spray—push for applications. Surf Eng 30:396–403

    Google Scholar 

  104. Moridi A, Hassani-Gangaraj SM, Guagliano M, Dao M (2014) Cold spray coating: review of material systems and future perspectives. Surf Eng 30:369–395

    Google Scholar 

  105. Richer P et al (2005) Effect of particle geometry and substrate preparation in cold spray. ITSC 2005 “Thermal spray connects: explore its surfacing potential!” Basel, Switzerland, pp.193–199

  106. Makinen H, Langeborn J, Vuoristo P (2007) Adhesion of cold sprayed coatings: effect of powder, substrate and heat treatment. In: Marple BR, Hyland MM, Lau Y, Lia C, Lima RS, Montavon G (eds) Thermal spray global solutions. ASM International, Materials Park, pp 31–36

    Google Scholar 

  107. Sakaki K, Tajima K, Li H, Shinkai S, Shimitzu Y (2004) Influence of substrate conditions and traverse speed on cold sprayed coatings. In: International Thermal Spray Conference 2004: Advances in Technology and Application, Osaka (Japan), pp 358–362. ASM International, Material Park

  108. Wu J, Yang J, Fang H, Yoon S, Lee C (2006) The bond strength of Al–Si coating on mild steel by kinetic spraying deposition. Appl Surf Sci 252:7809–7814

    Google Scholar 

  109. Marrocco T, McCartney DG, Shipway PH, Sturgeon AJ (2006) Production of titanium deposits by cold-gas dynamic spray: numerical modeling and experimental characterization. J Therm Spray Tech 15:263–272

    Google Scholar 

  110. Price TS, Shipway PH, McCartney DG (2006) Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy. J Therm Spray Tech 15:507–512. doi:10.1361/105996306X147108

    Google Scholar 

  111. Eason PD (2012) A structure property processing comparison of cold rolled pm copper and cold gas dynamically sprayed copper. J Powder Metall Min 1:101

    Google Scholar 

  112. Miguel JM, Vizcaíno S, Dosta S, Cinca N, Lorenzana C, Guilemany JM (2014) Recubrimientos de materiales compuestos metal-cerámico obtenidos por nuevas tecnologías de proyección térmica: Proyección fría (CGS) y su resistencia al desgaste. Rev Metal 47:390–401

    Google Scholar 

  113. Li W-Y, Zhang C, Guo X, Xu J, Li C-J, Liao H et al (2007) Ti and Ti-6Al-4V coatings by cold spraying and microstructure modification by heat treatment. Adv Eng Mater 9:418–423

    Google Scholar 

  114. Wong W, Rezaeian A, Yue S, Irissou E, Legoux J-G (2009) Effect of gas temperature, gas pressure, and particle characteristics on cold sprayed pure titanium coatings, thermal spray 2009. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings of the International Thermal Spray Conference. ASM International, Materials Park, pp 231–236

  115. Li C-J, Li W-Y (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coat Technol 167:278–283. doi:10.1016/S0257-8972(02)00919-2

    Google Scholar 

  116. Sun J, Han Y, Cui K (2008) Innovative fabrication of porous titanium coating on titanium by cold spraying and vacuum sintering. Mater Lett 62:3623–3625

    Google Scholar 

  117. Qiu D, Zhang M, Grøndahl L (2013) A novel composite porous coating approach for bioactive titanium-based orthopedic implants. J Biomed Mater Res Part A 101A:862–872

    Google Scholar 

  118. Gardon M, Latorre A, Torrell M, Dosta S, Fernández J, Guilemany JM (2013) Cold gas spray titanium coatings onto a biocompatible polymer. Mater Lett 106:97–99

    Google Scholar 

  119. Guilemany JM, Dosta S, Cinca N, Fernández J, Garcia I. Feasibility of cold gas spraying to produce metal coatings onto activaated polymeric substrates. Thermal Spray Centre (CPT). Intellectual properties protection (iPP). Ref.1240B p 10

  120. Al-Mangour B, Mongrain R, Irissou E, Yue S (2013) Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray. Surf Coat Technol 216:297–307

    Google Scholar 

  121. Steenkiste T, Gorkiewicz DW (2004) Analysis of tantalum coatings produced by the kinetic spray process. J Therm Spray Technol 13:265–273

    Google Scholar 

  122. Lozier A, Popoola OO, Mason JJ, Forstein M (2009) Bone fracture fixation system. US Patent 0198286 A1, August 6, 2009

  123. Kliemann J-O, Gutzmann H, Gaertner F, Huebner H, Borchers C, Klassen T (2011) Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces. J Therm Spray Technol 20:292–298

    Google Scholar 

  124. Salim NT, Yamada M, Nakano H, Fukumoto M (2011) The synthesis of titanium dioxide (TiO2) powder for cold spray process. In: 3rd International Congress on Ceramics (ICC): Novel Chemical Processing Sol-Gel and Solution-Based Processing 18:032019. doi:10.1088/1757-899X/18/3/032019

  125. Ishikawa K, Miyamoto Y, Nagayama M, Asaoka K (1997) Blast coating method: new method of coating titanium surface with hydroxyapatite at room temperature. J Biomed Mater Res 38:129–134

    Google Scholar 

  126. O’Hare P, Meenan BJ, Burke GA, Byrne G, Dowling D, Hunt JA (2010) Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31:515–522

    Google Scholar 

  127. Gbureck U, Masten A, Probst J, Thull R (2003) Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Mater Sci Eng C 23:461–465

    Google Scholar 

  128. O’Neill L, O’Sullivan C, O’Hare P, Sexton L, Keady F, O’Donoghue J (2009) Deposition of substituted apatites onto titanium surfaces using a novel blasting process. Surf Coat Technol 204:484–488

    Google Scholar 

  129. O’Sullivan C, O’Hare P, O’Leary ND, Crean AM, Ryan K, Dobson ADW et al (2010) Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J Biomed Mater Res Part B 95B:141–149

    Google Scholar 

  130. Byrne GD, O’Neill L, Twomey B, Dowling DP (2013) Comparison between shot peening and abrasive blasting processes as deposition methods for hydroxyapatite coatings onto a titanium alloy. Surf Coat Technol 216:224–231

    Google Scholar 

  131. Chun D-M, Ahn S-H (2011) Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta Mater 59:2693–2703

    Google Scholar 

  132. Chun D-M, Choi J-O, Lee CS, Ahn S-H (2012) Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5 μm) under low vacuum and room temperature using nano-particle deposition system (NPDS). Surf Coat Technol 206:2125–2132

    Google Scholar 

  133. Akedo J (2006) Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc 89:1834–1839

    Google Scholar 

  134. Hahn B-D, Park D-S, Choi J-J, Ryu J, Yoon W-H, Kim K-H et al (2009) Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J Am Ceram Soc 92:683–687. doi:10.1111/j.1551-2916.2008.02876.x

    Google Scholar 

  135. Park D-S, Kim I-S, Kim H, Chou AHK, Hahn B-D, Li L-H et al (2010) Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition. J Biomed Mater Res B 94B:353–358. doi:10.1002/jbm.b.31658

    Google Scholar 

  136. Zhang L, Zhang WT (2011) Numerical investigation on particle velocity in cold spraying of hydroxyapatite coating. Adv Mater Res 18:717–722

    Google Scholar 

  137. Singh RP (2011) Numerical evaluation, optimization and mathematical validation of cold spraying of hydroxyapatite using taguchi approach. Inter J Eng Sci Technol 3:7006–7015

    Google Scholar 

  138. Singh RP, Batra B (2013) Effect of cold spraying parameters and their interaction an hydroxyapatite deposition. J Appl Fluid Mech 6:555–561

    Google Scholar 

  139. Noorakma AW, Zuhailawati H, Aishvarya V, Dhindaw BK (2013) Hydroxyapatite-coated magnesium-based biodegradable alloy: cold spray deposition and simulated body fluid studies. J Mater Eng Perform 22:2997–3004

    Google Scholar 

  140. Noh JH, Kim DW, An JS, Chang HR, Kim DH, Hong KS, Chin DK (2012) Method for modifying the surface area of a bioinert material. US Patent 0009341 A1, January 12, 2012

  141. Lee JH, Jang HL, Lee KM, Baek H-R, Jin K, Hong KS et al (2013) In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater 9:6177–6187

    Google Scholar 

  142. Chen MW, McCauley JW, Dandekar DP, Bourne NK (2006) Dynamic plasticity and failure of high-purity alumina under shock loading. Nat Mater 5:614–618

    Google Scholar 

  143. Mukhopadhyay A, Joshi K, Dey A, Chakraborty R, Rav A, Biswas S et al (2010) Shock deformation of coarse grain alumina above Hugoniot elastic limit. J Mater Sci 45:3635–3651. doi:10.1007/s10853-010-4409-4

    Google Scholar 

  144. Zhou X, Mohanty P (2012) Electrochemical behavior of cold sprayed hydroxyapatite/titanium composite in Hanks’ solution. Electrochim Acta 65:134–140

    Google Scholar 

  145. Shukla V, Elliott G, Kear B, McCandlish L (2001) Hyperkinetic deposition of nanopowders by supersonic rectangular jet impingement. Script Mater 44:2179–2182

    Google Scholar 

  146. Zhou X (2012) Hydroxyapatite/titanium composite coating for biomedical applications. PhD thesis. University of Michigan

  147. Choudhuri A, Mohanty PS, Karthikeyan J (2009) Bio-ceramic composite coatings by cold spray technology. In: Proceedings of the International Thermal Spray Conference, pp 391–96

  148. Liu Y, Dang Z, Wang Y, Huang J, Li H (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties. Carbon 67:250–259

    Google Scholar 

  149. Sanpo N, Tan M, Cheang P, Khor KA (2009) Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J Therm Spray Tech 18:10–15

    Google Scholar 

  150. Gardon M, Melero H, Garcia-Giralt N, Dosta S, Cano IG, Guilemany JM (2014) Enhancing the bioactivity of polymeric implants by means of cold gas spray coatings, J Biomed Mater Res Part B

  151. Balla VK, Bodhak S, Bose S, Bandyopadhyay A (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6:3349–3359

    Google Scholar 

  152. Bobyn JD, Stackpool GJ, Hacing SA, Tanzer M, Krygier JJ (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Jt Surg Br 81:907–914

    Google Scholar 

  153. Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomedl Mater Res Part B 91B:470–480

    Google Scholar 

  154. Sanpo N, Hailan C, Loke K, Keng KP, Cheang P, Berndt CC, et al. (2010) Biocompatibility and antibacterial property of cold sprayed ZnO/titanium composite coating. In: Mendez-Vilas A (ed). Science and Technology against Microbial Pathogens. Research, Development and Evaluation. In: Proceedings of the International Conference on Antimicrobial Research, World Scientific pp 140-44

  155. Tamai K, Kawate K, Kawahara I, Takakura Y, Sakaki K (2009) Inorganic antimicrobial coating for titanium alloy and its effect on bacteria. J Orthop Sci 14:204–209

    Google Scholar 

  156. Champagne V, Helfritch D (2013) A demonstration of the antimicrobial effectiveness of various copper surfaces. J Biol Eng 7:1–7

    Google Scholar 

  157. Sanpo N, Ang S, Cheang P, Khor KA (2009) Antibacterial property of cold sprayed chitosan–Cu/Al coating. J Therm Spray Tech 18:600–608

    Google Scholar 

  158. Sanpo N, Saraswati T, Tan Meng Lu, Cheang P (2008) Anti-bacterial property of cold sprayed ZnO–Al coating. In: Proceedings of the 2008 international conference on biomedical engineering and informatics (BMEI 2008), vol 1, pp 488–491

Download references

Acknowledgements

The authors wish to thank the Generalitat de Catalunya for the Project 2014 SGR 1558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vilardell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilardell, A.M., Cinca, N., Concustell, A. et al. Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art. J Mater Sci 50, 4441–4462 (2015). https://doi.org/10.1007/s10853-015-9013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9013-1

Keywords

Navigation