Skip to main content
Log in

Enhanced antimicrobial activity with faceted silver nanostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Faceted silver nanostructures including triangular nanoprisms, nanotetrahedra, and nanodecahedra were synthesized via a facile photochemical method at controlled wavelengths using spherical nanoparticles as the seeds. Scanning transmission electron microscopy studies showed that the resulting nanostructures were much larger in size (20–50 nm) than the spherical seed nanoparticles (under 5 nm), and X-ray diffraction as well as high-resolution transmission electron microscopy measurements confirmed that these nanostructures exhibited predominantly {111} faceted surfaces. Importantly, the silver nanostructures demonstrated markedly better antimicrobial activity than the spherical seed nanoparticles as evidenced by a lower minimum inhibitory concentration and more dramatic changes in both growth rate and lag phase at lower concentrations, which were attributed to the greater reactivity of the {111} faceted surfaces toward oxygen-rich bacterial surface moieties that allowed for more rapid localization to bacterial cells and increased interactions with structurally vital outer-membrane proteins. These results highlight the significance of surface morphologies of metal nanostructures in the manipulation of their antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander JW (2009) History of the medical use of silver. Surg Infect (Larchmt) 10(3):289–292. doi:10.1089/sur.2008.9941

    Article  Google Scholar 

  2. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  Google Scholar 

  3. Maillard JY, Hartemann P (2013) Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39(4):373–383. doi:10.3109/1040841X.2012.713323

    Article  Google Scholar 

  4. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. doi:10.1007/s11051-010-9900-y

    Article  Google Scholar 

  5. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101. doi:10.1016/j.nano.2006.12.001

    Article  Google Scholar 

  6. Xu FF, Imlay JA (2012) Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol 78(10):3614–3621. doi:10.1128/AEM.07368-11

    Article  Google Scholar 

  7. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  Google Scholar 

  8. Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39):13214–13223. doi:10.1021/bi0508542

    Article  Google Scholar 

  9. Petering HG (1976) Pharmacology and toxicology of heavy-metals—Silver. Pharmacol Ther Pt A 1(2):127–130. doi:10.1016/0362-5478(76)90002-4

    Google Scholar 

  10. Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152(1):7–13

    Google Scholar 

  11. Yamane T, Davidson N (1962) On the complexing of deoxyribonucleic acid by silver (I). Biochim Biophys Acta 55:609–621

    Article  Google Scholar 

  12. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834. doi:10.1021/Jp711616v

    Article  Google Scholar 

  13. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24(2):192–196

    Google Scholar 

  14. Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464. doi:10.1021/la800091y

    Article  Google Scholar 

  15. Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin(R) stabilized silver nanoparticles. Nanotechnology 19(35):355707. doi:10.1088/0957-4484/19/35/355707

    Article  Google Scholar 

  16. Porel S, Ramakrishna D, Hariprasad E, Gupta AD, Radhakrishnan TP (2011) Polymer thin film with in situ synthesized silver nanoparticles as a potent reusable bactericide. Curr Sci India 101(7):927–934

    Google Scholar 

  17. Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 12(3):288–294. doi:10.1111/j.1067-1927.2004.012304.x

    Article  Google Scholar 

  18. Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3(4):282–294. doi:10.1111/j.1742-481X.2006.00265.x

    Article  Google Scholar 

  19. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  20. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/AEM.02218-06

    Article  Google Scholar 

  21. Horswell SL, Pinheiro AL, Savinova ER, Danckwerts M, Pettinger B, Zei MS, Ertl G (2004) A comparative study of hydroxide adsorption on the (111), (110), and (100) faces of silver with cyclic voltammetry, ex situ electron diffraction, and in situ second harmonic generation. Langmuir 20(25):10970–10981. doi:10.1021/la0483818

    Article  Google Scholar 

  22. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903. doi:10.1126/science.1066541

    Article  Google Scholar 

  23. Thrall ES, Steinberg AP, Wu XM, Brus LE (2013) The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J Phys Chem C 117(49):26238–26247. doi:10.1021/Jp409586z

    Article  Google Scholar 

  24. Xue C, Metraux GS, Millstone JE, Mirkin CA (2008) Mechanistic study of photomediated triangular silver nanoprism growth. J Am Chem Soc 130(26):8337–8344. doi:10.1021/ja8005258

    Article  Google Scholar 

  25. Lu HF, Zhang HX, Yu X, Zeng SW, Yong KT, Ho HP (2012) Seed-mediated Plasmon-driven Regrowth of Silver Nanodecahedrons (NDs). Plasmonics 7(1):167–173. doi:10.1007/s11468-011-9290-8

    Article  Google Scholar 

  26. Pastoriza-Santos I, Liz-Marzan LM (2008) Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18(15):1724–1737. doi:10.1039/B716538b

    Article  Google Scholar 

  27. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957):487–490. doi:10.1038/nature02020

    Article  Google Scholar 

  28. Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA (2009) Colloidal gold and silver triangular nanoprisms. Small 5(6):646–664. doi:10.1002/smll.200801480

    Article  Google Scholar 

  29. Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3(11):1565–1568. doi:10.1021/nl034757a

    Article  Google Scholar 

  30. Bastys V, Pastoriza-Santos I, Rodriguez-Gonzalez B, Vaisnoras R, Liz-Marzan LM (2006) Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv Funct Mater 16(6):766–773

    Article  Google Scholar 

  31. Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6. Artn 434. doi:10.1186/1556-276x-6-434

  32. Liu T, Li DS, Yang DR, Jiang MH (2011) Preparation of echinus-like SiO2@Ag structures with the aid of the HCP phase. Chem Commun 47(18):5169–5171. doi:10.1039/C1cc10401b

    Article  Google Scholar 

  33. McEachran M, Kitaev V (2008) Direct structural transformation of silver platelets into right bipyramids and twinned cube nanoparticles: morphology governed by defects. Chem Commun (Camb) 44:5737–5739. doi:10.1039/b813519c

    Article  Google Scholar 

  34. Gao Y, Jiang P, Song L, Wang JX, Liu LF, Liu DF, Xiang YJ, Zhang ZX, Zhao XW, Dou XY, Luo SD, Zhou WY, Xie SS (2006) Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction. J Crystal Growth 289(1):376–380. doi:10.1016/j.jcrysgro.2005.11.123

    Article  Google Scholar 

  35. Zhang J, Li S, Wu J, Schatz GC, Mirkin CA (2009) Plasmon-mediated synthesis of silver triangular bipyramids. Angew Chem Int Ed Engl 48(42):7787–7791. doi:10.1002/anie.200903380

    Article  Google Scholar 

  36. Wiley BJ, Xiong Y, Li ZY, Yin Y, Xia Y (2006) Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett 6(4):765–768. doi:10.1021/nl060069q

    Article  Google Scholar 

  37. Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20(16):5186–5190. doi:10.1021/Cm800926u

    Article  Google Scholar 

  38. Zheng X, Zhao X, Guo D, Tang B, Xu S, Zhao B, Xu W, Lombardi JR (2009) Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir 25(6):3802–3807. doi:10.1021/la803814j

    Article  Google Scholar 

  39. Rocha TCR, Zanchet D (2007) Structural defects and their role in the growth of Ag triangular nanoplates. J Phys Chem C 111(19):6989–6993. doi:10.1021/Jp0702696

    Article  Google Scholar 

  40. Zhou J, An J, Tang B, Xu S, Cao Y, Zhao B, Xu W, Chang J, Lombardi JR (2008) Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir 24(18):10407–10413. doi:10.1021/la800961j

    Article  Google Scholar 

  41. Germain V, Li J, Ingert D, Wang ZL, Pileni MP (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107(34):8717–8720

    Article  Google Scholar 

  42. Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18(14):2005–2016. doi:10.1002/adfm.200800233

    Article  Google Scholar 

  43. Creighton JA, Eadon DG (1991) Ultraviolet visible absorption-spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87(24):3881–3891

    Article  Google Scholar 

  44. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. doi:10.1021/Jp026731y

    Article  Google Scholar 

  45. Xu S, Tang B, Zheng X, Zhou J, An J, Ning X, Xu W (2009) The facet selectivity of inorganic ions on silver nanocrystals in etching reactions. Nanotechnology 20(41):415601. doi:10.1088/0957-4484/20/41/415601

    Article  Google Scholar 

  46. Gutierrez M, Henglein A (1993) Formation of colloidal silver by push-pull reduction of Ag+. J Phys Chem 97(44):11368–11370. doi:10.1021/J100146a003

    Article  Google Scholar 

  47. Jiang ZJ, Liu CY, Li YJ (2004) Electrochemical studies of silver nanoparticles tethered on silica sphere. Chem Lett 33(5):498–499

    Article  Google Scholar 

  48. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria–Bertani broth. J Bacteriol 189(23):8746–8749. doi:10.1128/Jb.01368-07

    Article  Google Scholar 

  49. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983. doi:10.1039/C3ra44507k

    Article  Google Scholar 

  50. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. doi:10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3

    Article  Google Scholar 

  51. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8(2):217–225

    Google Scholar 

  52. Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4):1027–1032. doi:10.1016/j.watres.2008.12.002

    Article  Google Scholar 

  53. Robinson TP, Ocio MJ, Kaloti A, Mackey BM (1998) The effect of the growth environment on the lag phase of Listeria monocytogenes. Int J Food Microbiol 44(1–2):83–92 S0168-1605(98)00120-2

    Article  Google Scholar 

  54. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122. doi:10.1007/s00253-009-2159-5

    Article  Google Scholar 

  55. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 58(1):33–40. doi:10.1366/000370204322729441

    Article  Google Scholar 

  56. Friedrich T (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364(2):134–146

    Article  Google Scholar 

  57. Cecchini G, Schroder I, Gunsalus RP, Maklashina E (2002) Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553(1–2):140–157

    Article  Google Scholar 

  58. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37(2):239–253

    Article  Google Scholar 

  59. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924. doi:10.1021/pr0504079

    Article  Google Scholar 

  60. Letellier L, Shechter E (1979) Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles. Eur J Biochem 102(2):441–447

    Article  Google Scholar 

  61. Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136(1):280–285

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (CHE-1012258, CHE-1265635 and DMR-1409396). TEM work was carried out at the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory as part of a user project. The PXRD data in this work were recorded on a Rigaku SmartLab instrument supported by the NSF Major Research Instrumentation (MRI) Program under Grant DMR-1126845.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chad Saltikov or Shaowei Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2015_8847_MOESM1_ESM.pdf

Electronic Supplementary Information. Shape distribution of faceted silver nanostructures, representative high-resolution TEM image of a silver nanoprism, and summary of antimicrobial activity of seed nanoparticles and faceted nanostructures. (PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Andrade, M., Cho, A.T., Hu, P. et al. Enhanced antimicrobial activity with faceted silver nanostructures. J Mater Sci 50, 2849–2858 (2015). https://doi.org/10.1007/s10853-015-8847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8847-x

Keywords

Navigation