Skip to main content
Log in

Sensitivity of gold nano-conductors to voids, substitutions, and electric field: ab initio results

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gold nanowires are good candidates for nano-electronics devices. A previous study has shown that the beryllium-terminated BeO (0001) surface may be a useful platform for supporting gold nano-conductors, since it preserves the nano wire configuration and does not restrict its conductivity. Here, we used ab initio simulations to determine the sensitivity of potential gold nano-conductors to the presence of point defects, O2 substitutions and to an applied perpendicular electric field, as in field effect transistors. We found that the presence of the point defects causes only small changes in the atomic bond lengths of the NW, does not alter the NW configuration, but may affect the overall conductivity. Single or double voids on the same channel reduce the conductance by 28 % at most, but when the voids arrange in a way that only one channel remains for conductance, it reduces by factor of two to ≈1 G 0 (G 0 = 2e 2/h). The presence of a single O2 molecule as a substitution reduces the electron availability in the neighboring Au atoms, in most cases reducing the conductance. The perpendicular electric field, which is typical for field effect transistors, affects the electron density distribution, shifts and changes the conductance spectra profile, but does not decrease the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Commercial software is identified to specify procedures. Such identification does not imply recommendation by the National Institute of Standards and Technology.

References

  1. Leong M, Doris B, Kedzierski J, Rim K, Yang M (2004) Silicon device scaling to the sub-10-nm regime. Science 306:2057–2060

    Article  Google Scholar 

  2. Schulz M (1999) The end of the road for silicon? Nature 399:729–730

    Article  Google Scholar 

  3. Lundstrom M (2003) Moore’s law forever? Science 299:210–211

    Article  Google Scholar 

  4. Tavazza F, Levine LE, Chaka AM (2011) Simulation approaches for studying the conductance behavior of gold nanowires during tensile deformation. Model Simul Mater Sci Eng 19:074001

    Article  Google Scholar 

  5. Tavazza F, Levine LE, Chaka AM (2010) Structural changes during the formation of gold single-atom chains: stability criteria and electronic structure. Phys Rev B 81:235424

    Article  Google Scholar 

  6. Oshima Y, Kurui Y, Takayanagi K (2010) One-by-one introduction of single lattice planes in a bottlenecked gold contact during stretching. J Phys Soc Jpn 79:054702

    Article  Google Scholar 

  7. Yanson IK, Shklyarevskii OI, Csonka S, van Kempen H, Speller S, Yanso AI, van Ruitenbeek JM (2005) Atomic-size oscillations in conductance histograms for gold nanowires and the influence of work hardening. Phys Rev Lett 95:256806

    Article  Google Scholar 

  8. Kiguchi M, Konishi T, Murakoshi K (2006) Conductance bistability of gold nanowires at room temperature. Phys Rev B 73:125406

    Article  Google Scholar 

  9. Scheer E et al (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394:154–157

    Article  Google Scholar 

  10. Suzuki R, Tsutsui M, Miura D, Kurokawa S, Sakai A (2007) Distribution of 1G0 plateau length of Au contacts at room temperature. Jpn J Appl Phys 46:3694

    Article  Google Scholar 

  11. Kizuka T (2008) Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width. Phys Rev B 77:155401

    Article  Google Scholar 

  12. Kurui Y, Oshima Y, Okamoto M, Takayanagi K (2009) Conductance quantization and dequantization in gold nanowires due to multiple reflection at the interface. Phys Rev B 79:165414

    Article  Google Scholar 

  13. Ohnishi H, Kondo Y, Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395:780–783

    Article  Google Scholar 

  14. Smit RHM, Untiedt C, Rubio-Bollinger G, Segers RC, van Ruitenbeek JM (2003) Observation of a parity oscillation in the conductance of atomic wires. Phys Rev Lett 91:076805

    Article  Google Scholar 

  15. Dreher M, Pauly F, Heurich J, Cuevas JC, Scheer E, Nielaba P (2005) Structure and conductance histogram of atomic-sized Au contacts. Phys Rev B 72:75435

    Article  Google Scholar 

  16. Agraıt N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279

    Article  Google Scholar 

  17. Barzilai S, Tavazza F, Levine LE (2013) The effect of internal impurities on the mechanical and conductance properties of gold nanowires during elongation. Model Simul Mater Sci Eng 21:25004

    Article  Google Scholar 

  18. Agraıt N, Rubio G, Vieira S (1995) Plastic deformation of nanometer-scale gold connective necks. Phys Rev Lett 74:3995

    Article  Google Scholar 

  19. Rubio-Bollinger G, Joyez P, Agraıt N (2004) Metallic adhesion in atomic-size junctions. Phys Rev Lett 93:11680

    Article  Google Scholar 

  20. Lee YJ et al (2004) Electron transport through monovalent atomic wires. Phys Rev B 69:125409

    Article  Google Scholar 

  21. Tavazza F, Levine LE, Chaka AM (2009) Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions. J Appl Phys 106:43522

    Article  Google Scholar 

  22. Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300:1384–1389

    Article  Google Scholar 

  23. Qian Z, Li R, Hou S, Xue Z, Sanvito S (2007) An efficient nonequilibrium Green’s function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes. J Chem Phys 127:194710

    Article  Google Scholar 

  24. Brandbyge M, Mozoz JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  25. Fujimoto Y, Hirose K (2003) First-principles treatments of electron transport properties for nanoscale junctions. Phys Rev B 67:195315

    Article  Google Scholar 

  26. Grigoriev A, Skorodumova NV, Simak SI, Wendin G, Johansson B, Ahuja R (2006) Electron transport in stretched monoatomic gold wires. Phys Rev Lett 97:236807

    Article  Google Scholar 

  27. Ke L et al (2007) Ballistic conductance calculation of atomic-scale nanowires of Au and Co. Nanotechnology 18:095709

    Article  Google Scholar 

  28. Zhuang M, Ernzerhof M (2004) Zero-voltage conductance of short gold nanowires. J Chem Phys 120:4921

    Article  Google Scholar 

  29. Nilius N, Wallis TM, Persson M, Ho M (2003) Distance dependence of the interaction between single atoms: gold dimers on NiAl(110). Phys Rev Lett 90:196103

    Article  Google Scholar 

  30. Calzolari A, Cavazzoni C, Nardelli MB (2004) Electronic and transport properties of artificial gold chains. Phys Rev Lett 93:96404

    Article  Google Scholar 

  31. Nilius N, Wallis TM, Ho W (2002) Development of one-dimensional band structure in artificial gold chains. Science 297:1853–1856

    Article  Google Scholar 

  32. Nilius N, Wallis TM, Ho W (2005) Tailoring electronic properties of atomic chains assembled by STM. Appl Phys A 80:951–956

    Article  Google Scholar 

  33. Sashin VA, Bolorizadeh MA, Kheifets AS, Ford MJ (2003) Electronic band structure of beryllium oxide. J Phys 15:3567

    Google Scholar 

  34. Slack GA (1973) Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids 34:321–335

    Article  Google Scholar 

  35. Barzilai S, Tavazza F, Levine LE (2013) First-principle modeling of gold adsorption on BeO (0001). Surf Sci 609:39–43

    Article  Google Scholar 

  36. Barzilai S, Tavazza F, Levine LE (2013) Structure stability and electronic transport of gold nanowires on a BeO (0 0 0 1) surface. Model simul mater sci eng 21:075003

    Article  Google Scholar 

  37. Barzilai S, Tavazza F, Levine LE (2013) Sensitivity of gold nano-conductors to common contaminations: ab initio results. J Mat Sci 48:6619–6624

    Article  Google Scholar 

  38. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  Google Scholar 

  39. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  Google Scholar 

  40. Perdew JP, Burke S, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  41. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125

    Article  Google Scholar 

  42. Pulay P, Fogarasi G (1992) Geometry optimization in redundant internal coordinates. J Chem Phys 96:2856–2860

    Article  Google Scholar 

  43. Baker J, Kessi A, Delley B (1996) The generation and use of delocalized internal coordinates in geometry optimization. J Chem Phys 5:192–212

    Article  Google Scholar 

  44. Datta S (1995) Electron transport in mesoscopic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    Article  Google Scholar 

  46. Soler JM, Artacho E, Gale JD, Garc’ia A, Junquera J, Ordej’on P, S’anchez D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys 14:2745–2779

    Google Scholar 

  47. Atomistix ToolKit version 12.08, QuantumWise A/S

  48. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  49. Barzilai S, Tavazza F, Levine LE (2013) Ab initio study of the mechanical and transport properties of pure and contaminated silver nanowires. J Phys 25:325303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barzilai.

Additional information

S. Barzilai—On sabbatical leave from the Nuclear Research Center NEGEV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzilai, S., Tavazza, F. & Levine, L.E. Sensitivity of gold nano-conductors to voids, substitutions, and electric field: ab initio results. J Mater Sci 50, 412–419 (2015). https://doi.org/10.1007/s10853-014-8600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8600-x

Keywords

Navigation