Skip to main content

Advertisement

Log in

Switchable friction properties induced by shape memory effect

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the thermal-responsive polymer networks based on poly(vinyl butyral) (PVB) are prepared, and their friction properties in response to external stimuli are investigated. Under dry sliding condition, the materials show low friction (COF ~0.14) at room temperature, but show ultra-high friction (COF ~1.09) at 100 °C above the glass transition temperature of PVB. This marked variation is due to the effect of recovery stress caused by the shape memory effect of polymer networks. Additionally, the recovery stress would increase with the increase of cross-linked density and test temperature above T g, leading to a higher COF. The polymer networks also show excellent mechanical strength with tensile modulus and elongation at break over 60 MPa and 100 %, respectively. To the best of our knowledge, this is the first paradigm about tunable friction properties realized by shape memory polymer. These interesting properties would enable the polymer networks with potential application in the design of intelligent device in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. doi:10.1016/j.progpolymsci.2012.06.001

    Article  Google Scholar 

  2. Zhao Q, Behl M, Lendlein A (2013) Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter 9:1744–1755

    Article  Google Scholar 

  3. Huang WM, Zhao Y, Wang CC et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:1–34. doi:10.1007/s10965-012-9952-z

    Article  Google Scholar 

  4. Dedinaite A, Thormann E, Olanya G et al (2010) Friction in aqueous media tuned by temperature-responsive polymer layers. Soft Matter 6:2489–2498. doi:10.1039/C003320K

    Article  Google Scholar 

  5. Gong JP (2006) Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2:544–552. doi:10.1039/B603209P

    Article  Google Scholar 

  6. Han L, Yin J, Wang L et al (2012) Tunable stimulus-responsive friction mechanisms of polyelectrolyte films and tube forests. Soft Matter 8:8642–8650. doi:10.1039/C2SM25503K

    Article  Google Scholar 

  7. Stuart MAC, Huck WTS, Genzer J et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. doi:10.1038/nmat2614

    Article  Google Scholar 

  8. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118. doi:10.1016/j.progpolymsci.2008.07.005

    Article  Google Scholar 

  9. Wu Y, Cai M, Pei X, Liang Y, Zhou F (2013) Switching friction with thermal- responsive gels. Macromol Rapid Commun 34:1785–1790. doi:10.1002/marc.201300649

    Article  Google Scholar 

  10. Chang DP, Dolbow JE, Zauscher S (2006) Switchable friction of stimulus-responsive hydrogels†. Langmuir 23:250–257. doi:10.1021/la0617006

    Article  Google Scholar 

  11. Wei Q, Cai M, Zhou F, Liu W (2013) Dramatically tuning friction using responsive polyelectrolyte brushes. Macromolecules 46:9368–9379. doi:10.1021/ma401537j

    Article  Google Scholar 

  12. Zhou J, Yan F, Tian N, Zhou J (2005) Effect of temperature on the tribological and dynamic mechanical properties of liquid crystalline polymer. Polym Test 24:270–274. doi:10.1016/j.polymertesting.2004.11.010

    Article  Google Scholar 

  13. Véchambre C, Buléon A, Chaunier L, Gauthier C, Lourdin D (2011) Understanding the mechanisms involved in shape memory starch: macromolecular orientation, stress recovery and molecular mobility. Macromolecules 44:9384–9389. doi:10.1021/ma202019v

    Article  Google Scholar 

  14. Qi HJ, Nguyen TD, Castro F, Yakacki CM, Shandas R (2008) Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J Mech Phys Solids 56:1730–1751. doi:10.1016/j.jmps.2007.12.002

    Article  Google Scholar 

  15. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135. doi:10.1016/j.pmatsci.2011.03.001

    Article  Google Scholar 

  16. Tey SJ, Huang WM, Sokolowski WM (2001) Influence of long-term storage in cold hibernation on strain recovery and recovery stress of polyurethane shape memory polymer foam. Smart Mater Struct 10:321–325

    Article  Google Scholar 

  17. Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plast 22:279–313. doi:10.1016/j.ijplas.2005.03.004

    Article  Google Scholar 

  18. Yang B, Liu R, Huang J, Sun H (2013) Reverse dissolution as a route in the synthesis of Poly(vinyl butyral) with high butyral contents. Ind Eng Chem Res 52:7425–7431. doi:10.1021/ie400559s

    Article  Google Scholar 

  19. Bai Y, Zhang X, Wang Q, Wang T (2014) A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J Mater Chem A 2:4771–4778. doi:10.1039/C3TA15117D

    Article  Google Scholar 

  20. Messori M, Degli Esposti M, Paderni K et al (2013) Chemical and thermomechanical tailoring of the shape memory effect in poly(ε-caprolactone)-based systems. J Mater Sci 48:424–440. doi:10.1007/s10853-012-6757-8

    Article  Google Scholar 

  21. Bai Y, Jiang C, Wang Q, Wang T (2013) A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohydr Polym 96:522–527. doi:10.1016/j.carbpol.2013.04.026

    Article  Google Scholar 

  22. Zhang L, Jiang Y, Xiong Z et al (2013) Highly recoverable rosin-based shape memory polyurethanes. J Mater Chem A 1:3263–3267. doi:10.1039/C3TA01655B

    Article  Google Scholar 

  23. He M, Zhang H, Chen W, Xixia D (2013) Polymer physics. Fudan University, Shanghai

    Google Scholar 

  24. Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249. doi:10.1039/C3TA14340F

    Article  Google Scholar 

  25. Bai Y, Chen Y, Wang Q, Wang T (2014) Poly(vinyl butyral) based polymer networks with dual-responsive shape memory and self-healing properties. J Mater Chem A 2:9169–9177. doi:10.1039/C4TA00856A

    Article  Google Scholar 

  26. Ortega AM, Yakacki CM, Dixon SA, Likos R, Greenberg AR, Gall K (2012) Effect of crosslinking and long-term storage on the shape-memory behavior of (meth)acrylate-based shape-memory polymers. Soft Matter 8:7381–7392. doi:10.1039/C2SM25298H

    Article  Google Scholar 

  27. Maeda N, Chen N, Tirrell M, Israelachvili JN (2002) Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297:379–382. doi:10.1126/science.1072378

    Article  Google Scholar 

  28. Gong J, Iwasaki Y, Osada Y, Kurihara K, Hamai Y (1999) Friction of gels. 3. Friction on solid surfaces. J Phys Chem B 103:6001–6006. doi:10.1021/jp9902553

    Article  Google Scholar 

  29. Kim KS, Heo J, Kim KW (2010) Effects of temperature on the microscale adhesion behavior of thermoplastic polymer film. Tribol Lett 38:97–106. doi:10.1007/s11249-010-9578-4

    Article  Google Scholar 

  30. Gong YK, Nakashima K (2001) Photoinduced Electron Transfer from Pyrenes to Alkyl Viologens on the Surface of Polystyrene Latex Particles: effects of Polarities of the Donors and Charge Densities of the Particles. J Phys Chem B 106:803–808. doi:10.1021/jp0119532

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the National Nature Science Foundation of China (NSFC) (Grant No. 51305431), and the National Defense Basic Scientific Research Project (A1320110011) are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Bai, Y., Wang, Q. et al. Switchable friction properties induced by shape memory effect. J Mater Sci 49, 8394–8401 (2014). https://doi.org/10.1007/s10853-014-8549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8549-9

Keywords

Navigation