Skip to main content
Log in

Strain engineering of piezoelectric properties of strontium titanate thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The in-plane and out-of-plane piezoelectric properties of (001) strontium titanate (SrTiO3, STO) epitaxial thin films on pseudo-cubic (001) substrates are computed as a function of in-plane misfit strain. A nonlinear thermodynamic model is employed, which takes into account the appropriate mechanical boundary conditions, the electromechanical coupling between the polarization and the in-plane lattice mismatch, and the self-strains of the ferroelastic and ferroelectric phase transformations. The piezoelectric behavior of epitaxial STO films is described in various strain-induced ferroelectric phase fields in a temperature range from −50 to 50 °C. The calculations show that by carefully tailoring in-plane misfit strains in both tensile and compressive ranges, piezoelectric coefficients that are of the order of prototypical lead zirconate titanate and other lead-based piezoceramics can be realized. These results indicate that strain engineered STO films may be employed in a variety of sensor and actuator applications as well as surface acoustic wave devices and thin-film bulk acoustic resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Curie J, Curie P (1880) Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull Soc Min de France 3:90

    Google Scholar 

  2. Tzou H, Tseng C (1990) Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. J Sound Vib 138:17–34

    Article  Google Scholar 

  3. Safari A, Akdogan EK (2008) Piezoelectric and acoustic materials for transducer applications. Springer, New York

    Book  Google Scholar 

  4. Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D et al (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  5. Yaacob M, Arshad M, Manaf AA (2011) Modeling of circular piezoelectric micro ultrasonic transducer using CuAl10Ni5Fe4 on ZnO film for sonar applications. Acoust Phys 57:151–158

    Article  Google Scholar 

  6. Newnham RE (2004) Properties of materials: anisotropy, symmetry, structure: anisotropy, structure. Oxford University Press, New York

    Google Scholar 

  7. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267

    Article  Google Scholar 

  8. Kholkin A, Calzada M, Ramos P, Mendiola J, Setter N (1996) Piezoelectric properties of Ca-modified PbTiO3 thin films. Appl Phys Lett 69:3602–3604

    Article  Google Scholar 

  9. Smith GL, Pulskamp JS, Sanchez LM, Potrepka DM, Proie RM, Ivanov TG et al (2012) PZT-based piezoelectric MEMS technology. J Am Ceram Soc 95:1777–1792

    Article  Google Scholar 

  10. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M et al (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38:5505

    Article  Google Scholar 

  11. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev 96:581

    Article  Google Scholar 

  12. Nath R, Zhong S, Alpay SP, Huey B Cole M (2008) Enhanced piezoelectric response from barium strontium titanate multilayer films. Appl Phys Lett 92:012916-012916-3

  13. Duran C, Trolier-McKinstry S, Messing GL (2000) Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J Am Ceram Soc 83:2203–2213

    Article  Google Scholar 

  14. DeVoe DL (2001) Piezoelectric thin film micromechanical beam resonators. Sensor Actuat A Phys 88:263–272

    Article  Google Scholar 

  15. Karabalin R, Matheny M, Feng X, Defaÿ E, Le Rhun G, Marcoux C et al (2009) Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films. Appl Phys Lett 95:103111-103111-3

  16. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804

    Article  Google Scholar 

  17. Jaffe B, Roth RS, Marzullo S (1992) Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate’. Piezoelectricity 5:159

    Google Scholar 

  18. Kim JN, Haun MJ, Jang S, Cross LE, Xue XR (1989) Temperature behavior of dielectric and piezoelectric properties of samarium-doped lead titanate ceramics. Ultrasonics, ferroelectrics and frequency control. IEEE Trans 36:389–392

    Article  Google Scholar 

  19. Shao S, Zhang J, Zhang Z, Zheng P, Zhao M, Li J et al (2008) High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route. J Phys D Appl Phys 41:125408

    Article  Google Scholar 

  20. Barrow D, Petroff T, Tandon R, Sayer M (1997) Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J Appl Phys 81:876–881

    Article  Google Scholar 

  21. Huang Z, Leighton G, Wright R, Duval F, Chung HC, Kirby P, Whatmore RW (2007) Determination of piezoelectric coefficients and elastic constant of thin films by laser scanning vibrometry techniques. Sensor Actuat A Phys 135(2):660–665

    Article  Google Scholar 

  22. Liu D, Li J (2003) The enhanced and optimal piezoelectric coefficients in single crystalline barium titanate with engineered domain configurations. Appl Phys Lett 83:1193–1195

    Article  Google Scholar 

  23. Park S-E, Wada S, Cross L, Shrout TR (1999) Crystallographically engineered BaTiO single crystals for high-performance piezoelectrics. J Appl Phys 86:2746

    Article  Google Scholar 

  24. Merz WJ (1950) The effect of hydrostatic pressure on the Curie point of barium titanate single crystals. Phys Rev 78:52

    Article  Google Scholar 

  25. Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S (2006) Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn J Appl Phys 45:L30–L32

    Article  Google Scholar 

  26. Harwood M, Popper P, Rushman D (1947) Curie point of barium titanate. Nature 160:58–59

    Article  Google Scholar 

  27. Meyer RJ, Newnham RE, Amin A, Kulwicki BM (2003) Flextensional barium strontium titanate actuators. J Am Ceram Soc 86:934–938

    Article  Google Scholar 

  28. Paik D-S, Park S-E, Shrout T, Hackenberger W (1999) Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. J Mater Sci 34:469–473. doi:10.1023/A:1004578225228

    Article  Google Scholar 

  29. Ghosh M, Rao MG (2013) Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d33 coefficient. Mater Exp 3:319–327

    Article  Google Scholar 

  30. Zhao M-H, Wang Z-L, Mao SX (2004) Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett 4:587–590

    Article  Google Scholar 

  31. Martin F, Muralt P, Dubois M-A, Pezous A (2004) Thickness dependence of the properties of highly c-axis textured AlN thin films. J Vac Sci Technol A 22:361–365

    Article  Google Scholar 

  32. Du H, Zhou W, Luo F, Zhu D, Qu S, Li Y et al (2008) Structure and electrical properties’ investigation of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 lead-free piezoelectric ceramics. J Phys D Appl Phys 41:085416

    Article  Google Scholar 

  33. Ballman A, Brown H (1967) The growth and properties of strontium barium metaniobate, Sr1−xBaxNb2O6, a tungsten bronze ferroelectric. J Cryst Growth 1:311–314

    Article  Google Scholar 

  34. Matsuo K, Xie RJ, Akimune Y, Sugiyama T (2002) Preparation of lead-free Sr2−xCaxNaNb5O15. Nippon Seram Kyo Gak 110(5):491–494

    Article  Google Scholar 

  35. Karimi S, Reaney I, Han Y, Pokorny J, Sterianou I (2009) Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44:5102–5112. doi:10.1007/s10853-009-3545-1

    Article  Google Scholar 

  36. Sbrockey NM, Tompa GS, Kalkur TS, Zhang J, Alpay SP, Cole MW (2012) Voltage induced acoustic resonance in metal organic chemical vapor deposition SrTiO3 thin film. J Vac Sci Tech B 30(6):061202

    Article  Google Scholar 

  37. Hees J, Heidrich N, Pletschen W, Sah R, Wolfer M, Williams O et al (2013) Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24:025601

    Article  Google Scholar 

  38. Kuo H, Shu Y, Chen H, Hsueh C, Wang C, Chu Y (2010) Domain pattern and piezoelectric response across polymorphic phase transition in strained bismuth ferrite films. Appl Phys Lett 97:242906-242906-3

  39. Simões A, Gonzalez A, Aguiar E, Riccardi C, Longo E, Varela J (2008) Piezoelectric behavior of SrRuO buffered lanthanum modified bismuth ferrite thin films grown by chemical method. Appl Phys Lett 93:142902

    Article  Google Scholar 

  40. Khassaf H., Ibanescu G., Pintilie I., Misirlioglu I., and Pintilie L. (2012) Potential barrier increase due to Gd doping of BiFeO3 layers in Nb:SrTiO3-BiFeO3-Pt structures displaying diode-like behavior, Appl. Phys. Lett. 100:252903-252903-4

  41. Panda P (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. doi:10.1007/s10853-009-3643-0

    Article  Google Scholar 

  42. Grupp DE, Goldman AM (1997) Giant piezoelectric effect in strontium titanate at cryogenic temperatures. Science 276:392–394

    Article  Google Scholar 

  43. Sathyamurthy S, Salama K (2000) Chemical solution deposition of highly oriented strontium titanate buffer layers for coated conductors. Supercond Sci Tech 13:L1

    Article  Google Scholar 

  44. Zhang J, Misirlioglu I, Alpay SP, Rossetti G (2012) Electrocaloric properties of epitaxial strontium titanate films. Appl Phys Lett 100:222909-222909-4

  45. Fleury PA, Scott JF, Worlock JM (1968) Soft phonon modes and the 110 K phase transition in SrTiO3. Phys Rev Lett 21:16–19

    Article  Google Scholar 

  46. Bednorz J, Müller K (1984) Sr(1-x)Ca(x)TiO3: an XY quantum ferroelectric with transition to randomness. Phys Rev Lett 52:2289

    Article  Google Scholar 

  47. Devonshire A (1954) Theory of ferroelectrics. Adv Phys 3:85–130

    Article  Google Scholar 

  48. Weiss C, Zhang J, Spies M, Abdallah L, Zollner S, Cole MW et al (2012) Bulk-like dielectric properties from metallo-organic solution–deposited SrTiO3 films on Pt-coated Si substrates. J Appl Phys 111:054108-054108-9

  49. Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y et al (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761

    Article  Google Scholar 

  50. Pardo L, Mendiola J, Alemany C (1988) Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J Appl Phys 64:5092–5097

    Article  Google Scholar 

  51. Chen LQ (2008) Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 91:1835–1844

    Article  Google Scholar 

  52. Sepliarsky M, Phillpot S, Stachiotti M, Migoni R (2002) Ferroelectric phase transitions and dynamical behavior in KNbO/KTaO superlattices by molecular-dynamics simulation. J Appl Phys 91:3165

    Article  Google Scholar 

  53. Khenata R, Sahnoun M, Baltache H, Rerat M, Rashek A, Illes N et al (2005) First-principle calculations of structural, electronic and optical properties of BaTiO3 and BaZrO3 under hydrostatic pressure. Solid State Commun 136:120–125

    Article  Google Scholar 

  54. Li W, Weng G (2004) A micromechanics-based thermodynamic model for the domain switch in ferroelectric crystals. Acta Mater 52:2489–2496

    Article  Google Scholar 

  55. Pertsev NA, Tagantsev AK, Setter N (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B 61:R825

    Article  Google Scholar 

  56. Pertsev NA, Tagantsev AK, Setter N (2002) Erratum: Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films [Phys. Rev. B 61:R825 (2000)]. Phys Rev B 65:219901

    Article  Google Scholar 

  57. Tumarkin A, Gaidukov M, Razumov S, Gagarin A (2012) Capacitor structures based on strontium titanate films. Phys Solid State 54:968–971

    Article  Google Scholar 

  58. Frohlich K, Machajdik D, Rosova A, Vavra I, Weiss F, Bochu B et al (1995) Growth of SrTiO3 thin epitaxial-films by aerosol MOCVD. Thin Solid Films 260:187–191

    Article  Google Scholar 

  59. Warusawithana MP, Cen C, Sleasman CR, Woicik JC, Li Y, Kourkoutis LF et al (2009) A ferroelectric oxide made directly on silicon. Science 324:367–370

    Article  Google Scholar 

  60. Choi D, Lee D, Sim H, Chang M, Hwang H (2006) Reversible resistive switching of SrTiO3 thin films for nonvolatile memory applications. Appl Phys Lett 88:082904

    Article  Google Scholar 

  61. Ban Z-G, Alpay SP, He F, Wells B, Xi X (2004) Multiple relaxation mechanisms in SrTiO3/SrRuO heterostructures. Appl Phys Lett 84:4848

    Article  Google Scholar 

  62. Matthews JW, Blakeslee AE (1974) Defects in epitaxial multilayers: I. Misfit dislocations. J Cryst Growth 27:118–125

    Google Scholar 

  63. Peng LS-J, Xi X, Moeckly BH, Alpay SP (2003) Strain relaxation during in situ growth of SrTiO3 thin films. Appl Phys Lett 83:4592–4594

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support through a Phase II STTR grant from the Department of Defense, US Army Research Office. The authors also thank N. M. Sbrockey, G. S. Tompa, and T. S. Kalkur for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Khassaf, H. & Alpay, S.P. Strain engineering of piezoelectric properties of strontium titanate thin films. J Mater Sci 49, 5978–5985 (2014). https://doi.org/10.1007/s10853-014-8316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8316-y

Keywords

Navigation