Skip to main content

Advertisement

Log in

The corrosion behaviour of commercial purity titanium processed by high-pressure torsion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercial purity (CP) titanium was processed by high-pressure torsion (HPT) under an applied pressure of 6.0 GPa for different numbers of torsional revolutions and then exposed to a 3.5 % NaCl solution for open-circuit potential measurements followed by electrochemical impedance spectroscopy and potentiodynamic polarization tests. The electrochemical results exhibit a complicated relationship between the corrosion resistance and grain refinement. Thus, microhardness measurements reveal an improvement in hardness for CP titanium after processing by HPT but the corrosion resistance is lower in the NaCl solution than for the annealed coarse-grained Ti. It is shown that the corrosion susceptibility of the HPT-processed samples decreases with increasing torsional strain. The effect of grain size and microstructure on the corrosion properties of ultrafine-grained CP Ti is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  2. Zhu YT, Langdon TG (2004) The fundamentals of nanostructured materials processed by severe plastic deformation. JOM 56(10):58–63

    Article  Google Scholar 

  3. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a process tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  5. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  6. Gao N, Wang CT, Wood RJK, Langdon TG (2012) Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J Mater Sci 47:4779–4797. doi:10.1007/s10853-011-6231-z

    Article  Google Scholar 

  7. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  8. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575–580

    Article  Google Scholar 

  9. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) The microstructural characteristics of ultrafine-grained nickel. Mater Sci Eng A391:377–389

    Article  Google Scholar 

  10. Wongsa-Ngam J, Wen H, Langdon TG (2013) Microstructural evolution in a Cu–Zr alloy processed by a combination of ECAP and HPT. Mater Sci Eng A579:126–135

    Article  Google Scholar 

  11. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  12. Sort J, Ile DC, Zhilyaev AP, Concustell A, Czeppe T, Stoica M, Suriñach S, Eckert J, Baró MD (2004) Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion. Scripta Mater 50:1221–1225

    Article  Google Scholar 

  13. Edalati K, Horita Z (2010) Application of high-pressure torsion for consolidation of ceramic powders. Scripta Mater 63:174–177

    Article  Google Scholar 

  14. Edalati K, Horita Z, Fujiwara H, Ameyama K (2010) Cold consolidation of ball-milled titanium powders using high-pressure torsion. Metall Mater Trans A41:3308–3317

    Article  Google Scholar 

  15. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminium alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A31:691–701

    Article  Google Scholar 

  16. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5–8

    Article  Google Scholar 

  17. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Achieving high strength and high ductility in precipitation-hardened alloys. Adv Mater 17:1599–1602

    Article  Google Scholar 

  18. Tsai TC, Chuang TH (1997) Role of grain size on the stress corrosion cracking of 7475 aluminum alloys. Mater Sci Eng A225:135–144

    Article  Google Scholar 

  19. Chung MK, Choi YS, Kim JG, Kim YM, Lee JC (2004) Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al Alloys. Mater Sci Eng A366:282–291

    Article  Google Scholar 

  20. Ralston KD, Fabijanic D, Birbilis N (2011) Effect of grain size on corrosion of high purity aluminium. Electrochim Acta 56:1729–1736

    Article  Google Scholar 

  21. Ralston KD, Brunner JG, Virtanen S, Birbilis N (2011) Effect of processing on grain size and corrosion of AA2024-T3. Corrosion 67:105001

    Article  Google Scholar 

  22. Jang YH, Kim SS, Han SZ, Lim CY, Kim CJ (2006) Corrosion and stress corrosion cracking behaviour of equal channel angular pressed oxygen-free copper in 3.5% NaCl solution. J Mater Sci 41:4293–4297. doi:10.1007/s10853-006-6992-y

    Article  Google Scholar 

  23. Rybal’chenko OV, Dobatkin SV, Kaputkina LM, Raab GI, Krasilnikov NA (2004) Strength of ultrafine-grained corrosion-resistant steels after severe plastic deformation. Mater Sci Eng A387–389:244–248

    Article  Google Scholar 

  24. Hadzima B, Janecek M, Estrin Y, Kim HS (2007) Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater Sci Eng A462:243–247

    Article  Google Scholar 

  25. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT (2004) Corrosion resistance of ultra fine-grained Ti. Scripta Mater 51:225–229

    Article  Google Scholar 

  26. Hoseini M, Shahryari A, Omanovic S, Szpunar JA (2009) Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros Sci 51:3064–3067

    Article  Google Scholar 

  27. Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66:075005

    Article  Google Scholar 

  28. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater 63:1201–1204

    Article  Google Scholar 

  29. Birbilis N, Ralston KD, Virtanen S, Fraser HL, Davies CHJ (2010) Grain character influences on corrosion of ECAPed pure magnesium. Corros Eng, Sci Technol 45:224–230

    Article  Google Scholar 

  30. Kutniy KV, Papirov II, Tikhonovsky MA, Pikalov AI, Sivtzov SV et al (2009) Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants. Mater Wiss Werkst 40:242–246

    Article  Google Scholar 

  31. Balakrishnan A, Lee BC, Kim TN, Panigrahi BB (2008) Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application. Trends Biomater Artif Organs 22:58–64

    Google Scholar 

  32. Faghihi S, Li D, Szpunar JA (2010) Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion. Nanotechnology 21:485703

    Article  Google Scholar 

  33. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A528:8198–8204

    Article  Google Scholar 

  34. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modelling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  35. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2012) Effect of grain size on the micro-tribological behaviour of pure titanium processed by high-pressure torsion. Wear 280–281:28–35

    Article  Google Scholar 

  36. Kawasaki M, Figueiredo RB, Langdon TG (2011) An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater 59:308–316

    Article  Google Scholar 

  37. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide range of pressure and strain. Metall Mater Trans A40:2079–2086

    Article  Google Scholar 

  38. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  39. Tamilselvi S, Murugaraj R, Rajendran N (2007) Electrochemical impedance spectroscopic studies of titanium and its alloys in saline medium. Mater Corros 58:113–120

    Article  Google Scholar 

  40. Assis SLde, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819

    Article  Google Scholar 

  41. Jorcin JB, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  Google Scholar 

  42. Todaka Y, Sasaki J, Moto T, Umemoto M (2008) Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Mater 59:615–618

    Article  Google Scholar 

  43. Kilmametov AR, Khristoforov AV, Wilde G, Valiev RZ (2007) X-ray studies of nanostructured metals processed by severe plastic deformation. Z Kristallog Suppl 26:334–344

    Google Scholar 

  44. Ivanisenko Y, Kilmametov A, Rösner H, Valiev RZ (2008) Evidence of α→ω phase transition in titanium after high pressure torsion. Int J Mater Res 99:36–41

    Article  Google Scholar 

  45. Wang CT, Fox AG, Langdon TG (2014) An investigation of hardness homogeneity and microstructure in pure titanium processed by high-pressure torsion. Mater Sci Forum (Proceedings of Thermec, Las Vegas, NV, December 2013) in press

Download references

Acknowledgements

The authors thank Dr Shuncai Wang (Electron Microscopy Centre, University of Southampton) for assistance with the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyan Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, M., Wang, C.T., Qu, M. et al. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J Mater Sci 49, 2824–2831 (2014). https://doi.org/10.1007/s10853-013-7988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7988-z

Keywords

Navigation