Skip to main content
Log in

Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, nanostructures of nickel have been successfully deposited on graphene nanosheet by direct electrochemical deposition. The morphology, nickel content, and magnetic properties of the graphene as well as composites were examined by scanning electron microscopy, transmission electron microscopic, elemental analysis, and vibrating sample magnetometer, respectively. Their relative complex permeability and permittivity were also measured, and reflection loss values were calculated at given thickness layer according to transmit line theory in the range 2–18 GHz. The results reveal that with the increasing of the thickness of the samples, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. When the absorbing thickness is 1 mm, the maximum absorption value of graphene is −6.5 dB at about 7 GHz. After decorating graphene sheet with magnetic nickel nanoparticles, the composites were shown to efficiently promote microwave absorbability. When the thickness is 1.5 mm, the absorption value of the composites exceeds −10 dB in the 5 GHz absorbing bandwidth and the maximum absorption value is −16.0 dB at 9.15 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) J Phys Chem C 116:13403

    Article  CAS  Google Scholar 

  2. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Nanolett 5:2131

    Article  CAS  Google Scholar 

  3. Saini P, Arora M (2013) J Mater Chem A 1:8926. doi:10.1039/C3TA11086A

  4. Zhou WC, Hu XJ, Bai XX, Zhou SY, Sun CH, Yan J, Chen P (2011) ACS Appl Mater Interfaces 3:3839

    Article  CAS  Google Scholar 

  5. Shen GZ, Xu Z, Li Y (2006) J Magn Magn Mater 301:325

    Article  CAS  Google Scholar 

  6. Saini P, Arora M, Gupta G, Gupta BK, Singh VN, Choudhary V (2013) Nanoscale 5:4330

    Article  CAS  Google Scholar 

  7. Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) ACS Appl Mater Interfaces 5:4712

    Article  CAS  Google Scholar 

  8. Oh JH, Oh KS, Kim CG, Hong CS (2004) Compos B 35:49

    Article  Google Scholar 

  9. Kumar R, Dhakate SR, Gupta T, Saini P, Singh BP, Mathur RB (2013) J Mater Chem A 1:5727

    Article  CAS  Google Scholar 

  10. Saini P, Choudhary V (2013) J Nanopart Res 15:1415

    Article  Google Scholar 

  11. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Mater Chem Phys 113:919

    Article  CAS  Google Scholar 

  12. Fan YZ, Yang HB, Liu XZ (2008) J Alloys Comp 461:490

    Article  CAS  Google Scholar 

  13. Saini P, Choudhary V, Dhawan SK (2009) Polym Adv Technol 20:355

    Article  CAS  Google Scholar 

  14. Saini P, Choudhary V (2013) J Mater Sci 48:797. doi:10.1007/s10853-012-6797-0

    Article  CAS  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  16. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) J Mater Sci 48:6223. doi:10.1007/s10853-013-7420-8

    Article  CAS  Google Scholar 

  17. Wang ZG, Hu Y, Yang WL, Zhou MJ, Hu X (2012) Sensors 12:4860

    Article  CAS  Google Scholar 

  18. Saini P, Arora M (2012) Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. In: Gomes AD (ed) New Polymers for Special Applications. Intech, Croatia, p 72

    Google Scholar 

  19. Wang C, Han XJ, Xu P, Zhang XL, Du YC, Hu SR, Wang JY, Wang XH (2011) Appl Phys Lett 98:072906

    Article  Google Scholar 

  20. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  21. Wang HL, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai HJ (2010) J Am Chem Soc 132:13978

    Article  CAS  Google Scholar 

  22. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) J Am Chem Soc 133:7296

    Article  CAS  Google Scholar 

  23. Zhou G, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Chem Mater 22:5306

    Article  CAS  Google Scholar 

  24. Xu H, Bi H, Yang RB (2012) J Appl Phys 111:07A522

    Article  Google Scholar 

  25. Wang T, Liu ZH, Lu MM, Wen B, Ouyang QY (2013) J Appl Phys 113:024314

    Article  Google Scholar 

  26. Wang H, Casalongue H, Liang Y, Dai H (2010) J Am Chem Soc 132:7472

    Article  CAS  Google Scholar 

  27. Shui X, Chung DDL (1997) J Electron Mater 26:928

    Article  CAS  Google Scholar 

  28. Fang JJ, Li SF, Zha WK, Cong HY, Chen JF, Chen ZZ (2011) J Inorg Mater 26:467

    Article  CAS  Google Scholar 

  29. Li SM, Wang B, Liu JH, Yu M, An JW (2012) Acta Phys Chim Sin 28:2754

    CAS  Google Scholar 

  30. Chen TT, Deng F, Zhu J, Chen CF, Sun GB, Ma SL, Yang XJ (2012) J Mater Chem 22:15190

    Article  CAS  Google Scholar 

  31. Zhao DL, Li X, Shen ZM (2008) Compos Sci Technol 68:2902

    Article  CAS  Google Scholar 

  32. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  33. Wang GX, Shen XP, Wang B, Yao J, Park J (2009) Carbon 47:1359

    Article  CAS  Google Scholar 

  34. Si YC, Samulski ET (2008) Nano Lett 8:1679

    Article  CAS  Google Scholar 

  35. Ishikawa M, Sakamoto A, Morita M, Matsuda Y, Ishida K (1996) J Power Sources 60:233

    Article  CAS  Google Scholar 

  36. Saini P, Choudhary V, Sood KN, Dhawan SK (2009) J Appl Polym Sci 113:3146

    Article  CAS  Google Scholar 

  37. Kumar R, Dhakate SR, Saini P, Mathur RB (2013) RSC Adv 3:4145

    Article  CAS  Google Scholar 

  38. Zou YH, Liu HB, Yang L (2006) J Magn Magn Mater 302:343

    Article  CAS  Google Scholar 

  39. Pinho MS, Gregori ML, Nunes RCR, Soares BG (2002) Eur Polym J 38:2321

    Article  CAS  Google Scholar 

  40. Zhang XF, Dong XL, Huang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP, Lee CG (2006) Appl Phys Lett 89:053115

    Article  Google Scholar 

  41. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Adv Mater 16:401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Foundation of China (No. 81271724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Cui or Sufang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Zha, W., Kang, M. et al. Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition. J Mater Sci 48, 8060–8067 (2013). https://doi.org/10.1007/s10853-013-7600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7600-6

Keywords

Navigation